Based on in silico results, recently we have assumed that FSCPX, an irreversible A1 adenosine receptor antagonist, inhibits the action of NBTI that is apparent on E/c curves of adenosine receptor agonists. As a mechanism for this unexpected effect, we hypothesized that FSCPX might modify the equilibrative and NBTI-sensitive nucleoside transporter (ENT1) in a way that allows ENT1 to transport adenosine but impedes NBTI to inhibit this transport. This assumption implies that our method developed to estimate receptor reserve for agonists with short half-life such as adenosine, in its original form, overestimates the receptor reserve. In this study, therefore, our goals were to experimentally test our assumption on this effect of FSCPX, to improve our receptor reserve-estimating method and then to compare the original and improved forms of this method. Thus, we improved our method and assessed the receptor reserve for the direct negative inotropic effect of adenosine with both forms of this method in guinea pig atria. We have found that FSCPX inhibits the effects of NBTI that are mediated by increasing the interstitial concentration of adenosine of endogenous (but not exogenous) origin. As a mechanism for this action of FSCPX, inhibition of enzymes participating in the interstitial adenosine production can be hypothesized, while modification of ENT1 can be excluded. Furthermore, we have shown that, in comparison with the improved form, the original version of our method overestimates receptor reserve but only to a small extent. Nevertheless, use of the improved form is recommended in the future.
The term receptor reserve, first introduced and used in the traditional receptor theory, is an integrative measure of response-inducing ability of the interaction between an agonist and a receptor system (consisting of a receptor and its downstream signaling). The underlying phenomenon, i.e., stimulation of a submaximal fraction of receptors can apparently elicit the maximal effect (in certain cases), provides an opportunity to assess the receptor reserve. However, determining receptor reserve is challenging for agonists with short half-lives, such as adenosine. Although adenosine metabolism can be inhibited several ways (in order to prevent the rapid elimination of adenosine administered to construct concentration–effect (E/c) curves for the determination), the consequent accumulation of endogenous adenosine biases the results. To address this problem, we previously proposed a method, by means of which this bias can be mathematically corrected (utilizing a traditional receptor theory-independent approach). In the present investigation, we have offered in silico validation of this method by simulating E/c curves with the use of the operational model of agonism and then by evaluating them using our method. We have found that our method is suitable to reliably assess the receptor reserve for adenosine in our recently published experimental setting, suggesting that it may be capable for a qualitative determination of receptor reserve for rapidly eliminating agonists in general. In addition, we have disclosed a possible interference between FSCPX (8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-N1-propylxanthine), an irreversible A1 adenosine receptor antagonist, and NBTI (S-(2-hydroxy-5-nitrobenzyl)-6-thioinosine), a nucleoside transport inhibitor, i.e., FSCPX may blunt the effect of NBTI.
Fenugreek is a common herb possessing several bioactive components including diosgenin. Here, dietary fenugreek seed flour and diosgenin were evaluated on a model of endothelium-dependent vasorelaxation by abdominal aortas isolated from rats receiving high-fat, high-sugar diet (HFHSD). 60 male Wistar rats were randomized into six groups: (i) negative control getting conventional rat feed regimen; (ii) positive control receiving HFHSD; (iii) a test group fed 2 g/kg bw/day fenugreek seed flour (containing 10 mg/kg bw/day diosgenin) + HFHSD; (iv) three test groups fed 1, 10 and 50 mg/kg bw/day diosgenin + HFHSD. Alimentary treatments were carried out for six weeks. The abdominal aortas were isolated, and 2 mm wide rings were sectioned off and mounted at a resting tension of 10 mN in organ baths containing Krebs solution (36 °C) exposed to 95% O2 and 5% CO2. After 60-min incubation, a norepinephrine concentration-response (E/c) curve was generated to determine their half-maximal effective concentration (EC50) value. After 60-min wash-out, a pre-contraction with norepinephrine EC50 was made, followed by an acetylcholine E/c curve. Plasma glutathione levels, glutathione-handling enzyme activities and blood antioxidant capacities were also determined. HFHSD significantly decreased the dilatory response to acetylcholine and increased plasma glutathione levels and these effects were significantly reversed by fenugreek seed flour, 10 and 50 mg/kg bw/day diosgenin. Both fenugreek and diosgenin treatments prevent HFHSD-induced endothelial dysfunction and redox changes. As fenugreek treatment was more effective at lower acetylcholine concentrations than diosgenin treatments, components of fenugreek other than diosgenin may contribute to the beneficial effects of dietary fenugreek seed flour.
Among diabetes patients, ophthalmological complications are very frequent. High blood glucose and (consequential) ischemia-reperfusion (I/R) injury contribute significantly to the severity of retinopathies. Diabetic retinopathy is among the leading causes of blindness. Our study demonstrates the effect of sour cherry seed extract (SCSE) on blood glucose and function of the retina with electroretinography (ERG) in a diabetic setting with or without ischemia-reperfusion (I/R) injury in Zucker Diabetic Fatty (ZDF) rats. Our results prove that the SCSE has a retinoprotective effect in diabetic rats: according to ERG measurements, SCSE treatment mitigated the retinal function-damaging effect of diabetes, and proved to be protective in the diabetic eye against ischemia-reperfusion injuries of the retina. Outcomes suggest that the protective effects of SCSE may occur through several pathways, including HO-1 dependent mechanisms. The observation that SCSE treatment decreases blood glucose is also novel. These findings offer the possibility for development of novel therapeutic strategies utilizing this emerging functional food, in particular in the prevention of conditions resulting from high blood glucose or I/R injury, such as deterioration of retinal microcirculation.
Background and Purpose The small molecule BGP‐15 has been reported to alleviate symptoms of heart failure and improve muscle function in murine models. Here, we investigated the acute and chronic effects of BGP‐15 in a rabbit model of atherosclerotic cardiomyopathy. Experimental Approach Rabbits were maintained on standard chow (control) or atherogenic diet (hypercholesterolemic) for 16 weeks. BGP‐15 was administered intravenously (once) or orally (for 16 weeks), to assess acute and chronic effects. Cardiac function was evaluated by echocardiography, endothelium‐dependent vasorelaxation was assessed and key molecules in the protein kinase G (PKG) pathway were examined by enzyme‐linked immunosorbent assay (ELISA) and western blot. Passive force generation was investigated in skinned cardiomyocytes. Key Results Both acute and chronic BGP‐15 treatments improved the diastolic performance of the diseased heart. However, vasorelaxation and serum lipid markers were unaffected. Myocardial cyclic guanosine monophosphate (cGMP) levels were elevated in the BGP‐15‐treated group, along with preserved PKG activity and increased phospholamban Ser16‐phosphorylation. PDE5 expression decreased in the BGP‐15‐treated group and PDE1 was inhibited. Cardiomyocyte passive tension reduced in BGP‐15‐treated rabbits, the ratio of titin N2BA/N2B isoforms increased and PKG‐dependent N2B‐titin phosphorylation elevated. Conclusions and Implications BGP‐15 treatment improves diastolic function, reduces cardiomyocyte stiffness and restores titin compliance in a rabbit model of atherosclerotic cardiomyopathy by increasing the activity of the cGMP‐PKG pathway. As BGP‐15 has been proven to be safe, it may be clinically useful in the treatment of diastolic dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.