With ∼30 000 deaths annually in the United States, prostate cancer (PCa) is a major oncologic disease. Here we show that the microRNAs miR-130a, miR-203 and miR-205 jointly interfere with the two major oncogenic pathways in prostate carcinoma and are downregulated in cancer tissue. Using transcriptomics we show that the microRNAs repress several gene products known to be overexpressed in this cancer. Argonaute 2 (AGO2) co-immunoprecipitation, reporter assays and western blot analysis demonstrate that the microRNAs directly target several components of the mitogen-activated protein kinase (MAPK) and androgen receptor (AR) signaling pathways, among those several AR coregulators and HRAS (Harvey rat sarcoma viral oncogene homolog), and repress signaling activity. Both pathways are central for the development of the primary tumor and in particular the progression to its incurable castration-resistant form. Reconstitution of the microRNAs in LNCaP PCa cells induce morphological changes, which resemble the effect of androgen deprivation, and jointly impair tumor cell growth by induction of apoptosis and cell cycle arrest. We therefore propose that these microRNAs jointly act as tumor suppressors in prostate carcinoma and might interfere with progression to castration resistance.
MicroRNA-21 (miR-21) is a key regulator of oncogenic processes. It is significantly elevated in the majority of human tumors and functionally linked to cellular proliferation, survival and migration. In this study, we used two experimental-based strategies to search for novel miR-21 targets. On the one hand, we performed a proteomic approach using two-dimensional differential gel electrophoresis (2D-DIGE) to identify proteins suppressed upon enhanced miR-21 expression in LNCaP human prostate carcinoma cells. The tumor suppressor acidic nuclear phosphoprotein 32 family, member A (ANP32A) (alias pp32 or LANP) emerged as the most strongly downregulated protein. On the other hand, we applied a mathematical approach to select correlated gene sets that are negatively correlated with primary-miR-21 (pri-miR-21) expression in published transcriptome data from 114 B-cell lymphoma cases. Among these candidates, we found tumor suppressor SMARCA4 (alias BRG1) together with the already validated miR-21 target, PDCD4. ANP32A and SMARCA4, which are both involved in chromatin remodeling processes, were confirmed as direct miR-21 targets by immunoblot analysis and reporter gene assays. Furthermore, knock down of ANP32A mimicked the effect of enforced miR-21 expression by enhancing LNCaP cell viability, whereas overexpression of ANP32A in the presence of high miR-21 levels abrogated the miR-21-mediated effect. In A172 glioblastoma cells, enhanced ANP32A expression compensated for the effects of anti-miR-21 treatment on cell viability and apoptosis. In addition, miR-21 expression clearly increased the invasiveness of LNCaP cells, an effect also seen in part upon downregulation of ANP32A. In conclusion, these results suggest that downregulation of ANP32A contributes to the oncogenic function of miR-21.
Styrene is a volatile organic compound (VOC) that is widely used as an intermediate in many industrial settings. There are known adverse health effects at environmentally significant concentrations, but little is known about the molecular effect of exposure to styrene at subacute toxic concentrations. We exposed human lung epithelial cells, at a wide range of concentrations (1 mg/m3-10 g/m3), to styrene and analyzed the effects on the proteome level by 2-DE, where 1,380 proteins spots were detected and 266 were identified unambiguously by mass spectrometry. A set of 16 protein spots was found to be significantly altered due to exposure to styrene at environmentally significant concentrations of 1-10 mg/m3 (0.2 – 2.3 ppm). Among these, superoxide dismutase [Cu-Zn] as well as biliverdin reductase A could be correlated with the molecular pathway of oxidative stress, while eukaryotic translation initiation factor 5A-1, ezrin, lamin B2 and voltage dependent anion channel 2 have been reported to be involved in apoptosis. Treatment with styrene also caused formation of styrene oxide-protein adducts, specifically for thioredoxin reductase 1. These results underline the relevance of oxidative stress as a primary molecular response mechanism of lung epithelial cells to styrene exposure at indoor-relevant concentrations.
In industrialized countries, people spend more time indoors and are therefore increasingly exposed to volatile organic compounds that are emitted at working places and from consumer products, paintings, and furniture, with chlorobenzene (CB) and 1,2-dichlorobenzene (DCB) being representatives of the halogenated arenes. To unravel the molecular effects of low concentrations typical for indoor and occupational exposure, we exposed human lung epithelial cells to CB and DCB and analyzed the effects on the proteome level by 2-D DIGE, where 860 protein spots were detected. A set of 25 and 30 proteins were found to be significantly altered due to exposure to environmentally relevant concentrations of 10(-2) g/m(3) of CB or 10(-3) g/m(3) of DCB (2.2 and 0.17 ppm), respectively. The most enriched pathways were cell death signaling, oxidative stress response, protein quality control, and metabolism. The involvement of oxidative stress was validated by ROS measurement. Among the regulated proteins, 28, for example, voltage-dependent anion-selective channel protein 2, PDCD6IP protein, heat shock protein beta-1, proliferating cell nuclear antigen, nucleophosmin, seryl-tRNA synthetase, prohibitin, and protein arginine N-methyltransferase 1, could be correlated with the molecular pathway of cell death signaling. Caspase 3 activation by cleavage was confirmed for both CB and DCB by immunoblotting. Treatment with CB or DCB also caused differential protein phosphorylation, for example, at the proteins HNRNP C1/C2, serine-threonine receptor associated protein, and transaldolase 1. Compared to previous results, where cells were exposed to styrene, for the chlorinated aromatic substances besides oxidative stress, apoptosis was found as the predominant cellular response mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.