In this study, continuous multi-pass friction stir welding was used to clad dissimilar AA6061 aluminium (Al) and C2801P copper (Cu) alloy materials. The empirical relationships between three process parameters and two-factor responses of Al–Cu clad joints were evaluated. Mathematical models were generated using regression analysis to predict the variation in tensile shear and peel load of the cladded joints. The sufficiency of the developed model was validated by analysis of variance (ANOVA), and the multi-criterion optimisation of factor responses was carried out via the response surface method. Results showed the formation of mechanical interlocking at the cladded interface and the development of a thin metallurgical bonding layer consisting of Al alloy content (8–21%), which greatly affected the quality of the Al–Cu joint interface. Moreover, the increase in shoulder overlap ratio, welding speed and tool rotational speed improved the shear and peel strength up to a certain range before gradually declining. The optimised process parameters for the cladded Al–Cu were obtained at a rotational speed of 986 r/min, welding speed of 8.6 mm/min and shoulder overlap ratio of 35%. The cladded Al–Cu generated a shear strength of 5850 kPa and peel strength of 750 kPa with an overall desirability function of 0.94.
Tool steels are commonly used to cut metal materials due to their distinctive hardness, resistance to abrasion and deformation. However, tool steels are difficult to be joined using conventional fusion welding process. In this study, a thixotropic property of metal was utilised to butt-join an AISI D2 tool steel by using uncommon direct partial re-melting (DPRM) method. A high frequency of induction heating is used to apply the DPRM method. From the recent study, there are many methods in achieving the globular microstructure with the success of semi-solid joining process. Though, very less information on the microstructural effect of semi-solid joining on the mechanical properties was reported. This study aims to analyse the effect of uniaxial force on the microstructural evolution and mechanical properties of the thixo-joint of D2 tool steel. The microstructural analysis showed the diffusion occurred between the grains of the thixo-joint sample with 2.5 N uniaxial force. The maximum strength of the thixo-joint sample with force was 652 MPa. This was slightly higher than the as-received sample and the thixo-joint sample without force. The average hardness value of the thixo-joint sample was 400 HV due to the transformation of ferrite to the metastable austenite.
The automotive industry is the main consumer of dual-phase (DP) steels which have relatively impressive mechanical strength. DP steels are also known to have good ductility and load-bearing property because of their hard martensitic microstructure in soft ferrite grains. The main objective of this study is to determine the mechanical behaviour of DP steels with various martensite volume fractions. A heat treatment with an intermediate quenching procedure followed by three different intercritical temperatures is conducted to produce various ferrite–martensite containing DP steels with different martensite volume fractions (V<sub>m</sub>). V<sub>m</sub> affects the mechanical properties of steel, such as work hardening, ultimate tensile strength, yield strength and hardness. The results of the experiments conducted in this study prove that excellent work hardening and ductility are observed for DP steels with a low amount of martensite phase. Meanwhile, DP steels with high V<sub>m</sub> exhibit high tensile strength and hardness with low ductility. Considère criterion is used to analyse the work hardening behaviour of DP steels. Results indicate that a one-stage work hardening takes place in DP steels; according to Considère criterion, instability strain or uniform elongation is also slightly increased by decreasing the martensite volume fraction or increasing the work hardening rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.