Despite the rapid growth of research on the crossmodal correspondence between visually presented shapes and basic tastes (e.g., sweet, sour, bitter, and salty), most studies that have been published to date have focused on shape contour (roundness/angularity). Meanwhile, other important features, such as symmetry, as well as the underlying mechanisms of the shape-taste correspondence, have rarely been studied. Over two experiments, we systematically manipulated the symmetry and contours of shapes and measured the influences of these variables on shape-taste correspondences. Furthermore, we investigated a potential underlying mechanism, based on the common affective appraisal of stimuli in different sensory modalities. We replicated the results of previous studies showing that round shapes are associated with sweet taste, whereas angular shapes are associated with sour and bitter tastes. In addition, we demonstrated a novel effect that the symmetry group of a shape influences how it is associated with taste. A significant relationship was observed between the taste and appraisal scores of the shapes, suggesting that the affective factors of pleasantness and threat underlie the shape-taste correspondence. These results were consistent across cultures, when we compared participants from Taiwanese and Western (UK, US, Canada) cultures. Our findings highlight that perceived pleasantness and threat are culturally common factors involved in at least some crossmodal correspondences.
In real-world environments, information is typically multisensory, and objects are a primary unit of information processing. Object recognition and action necessitate attentional selection of task-relevant from among task-irrelevant objects. However, the brain and cognitive mechanisms governing these processes remain not well understood. Here, we demonstrate that attentional selection of visual objects is controlled by integrated top–down audiovisual object representations (“attentional templates”) while revealing a new brain mechanism through which they can operate. In multistimulus (visual) arrays, attentional selection of objects in humans and animal models is traditionally quantified via “the N2pc component”: spatially selective enhancements of neural processing of objects within ventral visual cortices at approximately 150–300 msec poststimulus. In our adaptation of Folk et al.'s [Folk, C. L., Remington, R. W., & Johnston, J. C. Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 18, 1030–1044, 1992] spatial cueing paradigm, visual cues elicited weaker behavioral attention capture and an attenuated N2pc during audiovisual versus visual search. To provide direct evidence for the brain, and so, cognitive, mechanisms underlying top–down control in multisensory search, we analyzed global features of the electrical field at the scalp across our N2pcs. In the N2pc time window (170–270 msec), color cues elicited brain responses differing in strength and their topography. This latter finding is indicative of changes in active brain sources. Thus, in multisensory environments, attentional selection is controlled via integrated top–down object representations, and so not only by separate sensory-specific top–down feature templates (as suggested by traditional N2pc analyses). We discuss how the electrical neuroimaging approach can aid research on top–down attentional control in naturalistic, multisensory settings and on other neurocognitive functions in the growing area of real-world neuroscience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.