Leptospirosis is probably the most widespread zoonotic disease in the world especially in tropical countries. There has been an increase in individual studies, which assessed the frequency of leptospirosis in flood conditions. Some studies showed contact with floods was significantly associated with the occurrence of leptospirosis while other studies reported differently. The objective of this meta-analysis was to synthesize the evidence on the risk factors which are associated with human leptospirosis following flooding. We set up the inclusion criteria and searched for the original studies, addressing leptospirosis in human with related to flood in health-related electronic databases including PubMed, Embase, Ovid Medline, google scholar and Scopus sources. We used the terms ‘leptospirosis’, ‘flood’, ‘risk factor’ and terms from the categories were connected with “OR” within each category and by “AND” between categories. The initial search yielded 557 citations. After the title and abstract screening, 49 full-text papers were reviewed and a final of 18 observational studies met the pre-specified inclusion criteria. Overall, the pooled estimates of 14 studies showed that the contact with flooding was a significant factor for the occurrence of leptospirosis (pooled OR: 2.19, 95%CI: 1.48–3.24, I 2 :86%). On stratification, the strength of association was greater in the case-control studies (pooled OR: 4.01, 95%CI: 1.26–12.72, I 2 :82%) than other designs (pooled OR:1.77,95%CI:1.18–2.65, I 2 :87%). Three factors such as ‘being male’(pooled OR:2.06, 95%CI:1.29–2.83), the exposure to livestock animals (pooled OR: 1.95, 95%CI:1.26–2.64), the lacerated wound (pooled OR:4.35, 95%CI:3.07–5.64) were the risk factors significantly associated with the incidence of leptospirosis following flooding in the absence of within-study heterogeneity ( I 2 : 0%). We acknowledge study limitations such as publication bias and type 2 statistical errors. We recommended flood control and other environmental modifications that are expected to reduce the risk of leptospiral infection, and a multi-sectoral effort to this aspect would have long-term benefits.
Background: The global malaria decline has stalled and only a few countries are pushing towards pre-elimination. The aim of the malaria elimination phase is interruption of local transmission of a specified malaria parasite in a defined geographical area. New and improved screening tools and strategies are required for detection and management of very low-density parasitaemia in the field. The objective of this study was to synthesize evidence on the diagnostic accuracy of loop-mediated isothermal amplification (LAMP) test for the detection of malaria parasites among people living in endemic areas. Methods: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Diagnostic Test Accuracy (PRISMA-DTA) guideline. Relevant studies in the health-related electronic databases were searched. According to the criteria set for this study, eligible studies were identified. The quality of included studies was evaluated with the use of a quality assessment checklist. A summary performance estimates such as pooled sensitivity and specificity were stratified by type of LAMP. Bivariate model for data analyses was applied. Summary receiver operating characteristics plots were created to display the results of individual studies in a receiver operating characteristics space. Meta-regression analysis was performed to investigate the sources of heterogeneity among individual studies. Results: Twenty-seven studies across 17 endemic countries were identified. The vast majority of studies were with unclear risk of bias in the selection of index test. Overall, the pooled test performances were high for Pan LAMP (sensitivity: 0.95, 95% CI 0.91 to 0.97; specificity: 0.98, 95% CI 0.95 to 0.99), Plasmodium falciparum (Pf) LAMP (sensitivity: 0.96, 95% CI 0.94 to 0.98; specificity: 0.99, 95% CI 0.96 to 1.00) or for Plasmodium vivax (Pv) LAMP from 6 studies (sensitivity: 0.98, 95% CI 0.92 to 0.99; specificity: 0.99, 95% CI 0.72 to 1.00). The area under the curve for Pan LAMP (0.99, 95% CI 0.98-1.00), Pf LAMP (0.99, 95% CI 0.97-0.99) and Pv LAMP was (1.00, 95% CI 0.98-1.00) indicated that the diagnostic performance of these tests were within the excellent accuracy range. Meta-regression analysis showed that sample size had the greatest impact on test performance, among other factors. Conclusions: The current findings suggest that LAMP-based assays are appropriate for detecting low-level malaria parasite infections in the field and would become valuable tools for malaria control and elimination programmes.
Background This study aimed to synthesize evidence on the association between IL-10 gene (−819 C/T, −1082 A/G, −592 A/C) polymorphisms and the risk of developing diabetic nephropathy. Methods A systematic literature search was done in health-related electronic databases. The search was limited to studies published in English until September 2017. We also checked the references of retrieved articles and relevant reviews for any additional studies. The methodological quality of the studies included in this review was assessed using the 'Scales for Quality Assessment'. The I 2 test was used to quantify between-study heterogeneity. A value of I 2 > 50% indicated substantial heterogeneity. For the pooled analysis, summary odds ratio (OR) and its 95% confidence interval (CI) in random effect model were used. Results Eight case-control studies (1192 cases with diabetic nephropathy and 2399 controls) met the inclusion criteria. Three groups of people namely Africans, Asians and Caucasians were included in this review. There were significant protective effects of SNP -819 C/T in overall population (OR 0.32, 95% CI 0.26-0.4) and − 1082 A/G SNP in the Asian population (OR 0.64, 95% CI 0.47-0.86) on diabetic nephropathy in the recessive model. There was no significant effect of −592 A/C on diabetic nephropathy. Conclusion The findings suggest the protective effects of −1082A/G and -819G/A polymorphisms on the risk of developing diabetic nephropathy in type 2 diabetes mellitus, especially in the Asian population. Well-designed, prospective studies with sufficient number of participants are recommended to substantiate these findings.
BackgroundThe WHO recommends artemisinin-based combination therapies (ACTs) for the treatment of uncomplicated falciparum malaria. Hence, monitoring the efficacy of antimalarial drugs is a key component of malaria control and elimination. The published randomized trials that assessed comparisons of ACTs for treating uncomplicated falciparum malaria reported conflicting results in treatment efficacy. A network meta-analysis is an extension of pairwise meta-analysis that can synthesize evidence simultaneously from both direct and indirect treatment comparisons. The objective was to synthesize evidence on the comparative efficacy of antimalarial drugs for treatment of uncomplicated falciparum malaria in Asian region.MethodsRelevant randomized trials that assessed efficacy of antimalarial drugs for patients having uncomplicated falciparum malaria in Asian region were searched in health-related databases. We evaluated the methodological quality of the included studies with the Cochrane risk of bias tool. Main outcome was treatment success at day 28 as determined by the absence of parasiteamia. We performed network meta-analysis of the interventions in the trials, and assessed the overall quality of evidence using the GRADE approach.ResultsSeventeen randomized trials (n = 5043) were included in this network meta-analysis study. A network geometry was formed with 14 antimalarial treatment options such as artemether-lumefantrine (AL), artemisinin-piperaquine, artesunate-amodiaquine, artesunate-mefloquine (ASMQ), artesunate-chloroquine, artesunate-mefloquine home treatment, artesunate-mefloquine 2-day course, artesunate plus sulfadoxine-pyrimethamine, chloroquine, dihydroartemisinin-piperaquine (DHP), dihydroartemisinin-piperaquine home treatment, dihydroartemisinin-piperaquine 4-day course, dihydroartemisinin-piperaquine and added artesunate, sulfadoxine-pyrimethamine. A maximum number of trials included was DHP compared to ASMQ (n = 5). In general, DHP had better efficacy than AL at day 28 (DHP vs AL: OR 2.5, 95%CI:1.08–5.8). There is low certainty evidence due to limited number of studies and small trials.Discussion/ ConclusionsThe findings suggest the superiority of DHP (3–day course) to AL and other comparator ACTs are with the overall low/very low quality of evidence judgements. Moreover, one drug regimen is better than another is only if current drug-resistance patterns are at play. For example, the AL might be better than DHP in areas where both artemisinin and piperaquine resistance patterns are prevalent. For substantiation, well-designed larger trials from endemic countries are needed. In the light of benefit versus harm concept, future analysis with safety information is recommended.
Background Achieving malaria elimination requires the targeting of the human reservoir of infection, including those patients with asymptomatic infection. The objective was to synthesise evidence on the accuracy of the rapid-onsite diagnostic tests (RDTs) and microscopy for the detection of asymptomatic malaria as part of the surveillance activities in Asian countries. Methods This was a meta-analysis of diagnostic test accuracy. Relevant studies that evaluated the diagnostic performance of RDTs and microscopy for detection of asymptomatic malaria were searched in health-related electronic databases. The methodological quality of the studies included was assessed using the QUADAS-2 tool. Results Ten studies assessing RDT and/or microscopy were identified. The diagnostic accuracies in all these studies were verified by PCR. Overall, the pooled sensitivities of RDT, as well as microscopy for detection of any malaria parasites in asymptomatic participants, were low, while their pooled specificities were almost ideal. For the detection of Plasmodium falciparum, pooled sensitivity by RDT (59%, 95%CI:16–91%) or microscopy (55%, 95%CI: 25–82%) were almost comparable. For detection of Plasmodium vivax, pooled sensitivity of RDT (51%, 95% CI:7–94%) had also the comparable accuracy of microscopy (54%, 95%CI,11–92%). Of note are the wide range of sensitivity and specificity. Conclusion The findings of this meta-analysis suggest that RDTs and microscopy have limited sensitivity and are inappropriate for the detection of asymptomatic Plasmodium infections. Other methods including a combination of PCR-based strategies, Loop-Mediated Isothermal Amplification (LAMP) technique must be considered to target these infections, in order to achieve malaria elimination. However, more data is needed for the wide acceptance and feasibility of these approaches. Studies to explore the role of asymptomatic and sub-patent infections in the transmission of malaria are of critical importance and are recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.