Electroosmotic pumping is highly efficient in capillaries of less than 100 mu m inner diameter bearing an immobilized surface charge. Electric fields in the kV cm-1 range allow for liquid motion of several mm s-1 in the case of an aqueous electrolyte. This pumping mechanism is used for miniaturized chemical analysis systems. Flow and mixing behaviour in branched channels are characterized. A capillary electrophoresis device allows for repetitive, electroosmotic injections of 100 pL samples, for efficiencies of up to 200000 theoretical plates in less than a minute, and for external laser induced fluorescence detection at any capillary length of choice between 5 and 50 mm.
SummaryMiniaturization of separation columns implies equally reduced volumes of injectors, detectors, and the connecting channels. Planar chip technology provides a powerful means for the fabrication of micron-sized structures such as channels. This is demonstrated by two examples. An optical absorbance detector chip exhibits the expected behavior of a 1 mm optical path length cell despite its volume of 1 nL. A capillary electrophoresis device allows integrated injections of 100 pL samples, efficiencies of 70,000 to 160,000 theoretical plates in 10 to 20 seconds, and external laser-induced fluorescence detection at any capillary length of choice between 5 and 50 mm.
A novel concept for repeated column switching in capillary electrophoresis is presented. Theoretical considerations predict high plate numbers per volt. Using micromachining techniques, a planar glass structure has been fabricated, which contains four capillaries of 20 mm length arranged in a square. Laser fluorescence detection gave a cycle time of 70 s for 2.5 kV applied. After five cycles a theoretical plate number of 40,000 was reached.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.