Epilobium angustifolium L. is applied as an antiseptic agent in the treatment of skin diseases. However, there is a lack of information on human skin penetration of active ingredients with antioxidative potential. It seems crucial because bacterial infections of skin and subcutaneous tissue are common and partly depend on oxidative stress. Therefore, we evaluated in vitro human skin penetration of fireweed ethanol-water extracts (FEEs) by determining antioxidant activity of these extracts before and after penetration study using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and Folin–Ciocalteu methods. Microbiological tests of extracts were done. The qualitative and quantitative evaluation was performed using gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC-UV) methods. The in vitro human skin penetration using the Franz diffusion chamber was assessed. The high antioxidant activity of FEEs was found. Gallic acid (GA), chlorogenic acid (ChA), 3,4-dihydroxybenzoic acid (3,4-DHB), 4-hydroxybenzoic acid (4-HB), and caffeic acid (CA) were identified in the extracts. The antibacterial activities were found against Serratia lutea, S. marcescens, Bacillus subtilis, B. pseudomycoides, and B. thuringiensis and next Enterococcus faecalis, E. faecium, Streptococcus pneumoniae, Pseudomonas aeruginosa, and P. fluorescens strains. In vitro penetration studies showed the penetration of some phenolic acids and their accumulation in the skin. Our results confirm the importance of skin penetration studies to guarantee the efficacy of formulations containing E. angustifolium extracts.
Epilobium angustifolium L. is a popular and well-known medicinal plant. In this study, an attempt to evaluate the possibility of using this plant in preparations for the care and treatment of skin diseases was made. The antioxidant, antiaging and anti-inflammatory properties of ethanolic extracts from Epilobium angustifolium (FEE) were assessed. Qualitative and quantitative evaluation of extracts chemically composition was performed by gas chromatography with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). The total polyphenol content (TPC) of biologically active compounds, such as the total content of polyphenols (TPC), flavonoids (TFC), and assimilation pigments, as well as selected phenolic acids, was assessed. FEE was evaluated for their anti-inflammatory and antiaging properties, achieving 68% inhibition of lipoxygenase activity, 60% of collagenase and 49% of elastase. FEE also showed high antioxidant activity, reaching to 87% of free radical scavenging using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 59% using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Additionally, in vitro penetration studies were performed using two vehicles, i.e., a hydrogel and an emulsion containing FEE. These studies showed that the active ingredients contained in FEE penetrate through human skin and accumulate in it. The obtained results indicate that E. angustifolium may be an interesting plant material to be applied as a component of cosmetic and dermatological preparations with antiaging and anti-inflammatory properties.
Thyroid diseases are common conditions that have a negative impact on the health of all populations. The literature sheds light on the differences in the composition of the intestinal microbiota in patients suffering from thyroid diseases compared to healthy individuals. The microbiome affects the proper functioning of the thyroid gland, and the existence of the gut–thyroid axis is discussed in the context of both thyroid diseases and intestinal dysbiosis. The purpose of this review is to describe associations between the microbiome and its metabolites and thyroid dysfunction. We try to explain the role of the microbiome in the metabolism of thyroid hormones and the impact of thyroid autoimmune diseases. In addition, we raise issues related to the influence of bacterial metabolites, such as short-chain fatty acids or secondary bile acids, in the functioning of the thyroid gland. Last but not least, we explored the interactions between the gut microbiota and therapeutics and supplements typically administered to patients with thyroid diseases.
SummaryBackgroundSplenic artery aneurysm and pseudoaneurysm are rare pathologies. True aneurysms are usually asymptomatic. Aneurysm rupture occurring in 2–3% of cases results in bleeding into the lesser sack, peritoneal space or adjacent organs typically presenting as abdominal pain and hemodynamic instability. In contrast, pseudoaneurysms are nearly always symptomatic carrying a high risk of rupture of 37–47% and mortality rate of 90% if untreated. Therefore, prompt diagnosis and treatment are essential in the management of patients with splenic artery pseudoaneurysm. Typical causes include pancreatitis and trauma. Rarely, the rupture of a pseudoaneurysm presents as upper gastrointestinal (UGI) bleeding. Among causes, peptic ulcer is the casuistic one.Case ReportThis report describes a very rare case of recurrent UGI bleeding from a splenic artery pseudoaneurysm caused by a penetrating gastric ulcer. After negative results of endoscopy and ultrasound, the diagnosis was established in CT angiography. The successful treatment consisted of surgical ligation of the bleeding vessel and suture of the ulcer with preservation of the spleen and pancreas, which is rarely tried in such situations.ConclusionsThe most important factor in identifying a ruptured splenic artery pseudoaneurysm as a source of GI bleeding is considering the diagnosis. UGI hemorrhage from splenic artery pseudoaneurysm can have a relapsing course providing false negative results of endoscopy and ultrasound if performed between episodes of active bleeding. In such cases, immediate CT angiography is useful in establishing diagnosis and in application of proper therapy before possible recurrence.
The healing process of the fractured bone in a presence of poly(butylene succinate-butylene dilinoleate) (PBS-DLA) copolymer containing nanosized hydroxyapatite (HAP) particles has been investigated. The PBS-DLA material containing PBS hard segments and DLA soft segments (50:50 wt %) was used to prepare a polymer/ceramic composite with 30 wt % HAP. A new PBS-DLA copolymer showed a high elasticity of 500% and 15 MPa tensile strength. Addition of HAP improved tensile strength up to 25 MPa while high elasticity has been preserved going down only to 300% of elongation at break. A polymer nanocomposite was fabricated into small elastic polymer rods 15 mm long and 1 × 2 mm in cross section and used for tibia bone fixation in rats. Mallory trichrome staining indicated that new biodegradable copolymers and its composite containing HAP have triggered the most advanced bone healing of all tested materials, thus indicating their high potential for bone tissue engineering and repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.