The absorption of drugs is limited by the epithelial barriers of the gastrointestinal tract. One of the strategies to improve drug delivery is the modulation of barrier function by the targeted opening of epithelial tight junctions. In our previous study the 18-mer amphiphilic PN159 peptide was found to be an effective tight junction modulator on intestinal epithelial and blood–brain barrier models. PN159, also known as KLAL or MAP, was described to interact with biological membranes as a cell-penetrating peptide. In the present work we demonstrated that the PN159 peptide as a penetration enhancer has a dual action on intestinal epithelial cells. The peptide safely and reversibly enhanced the permeability of Caco-2 monolayers by opening the intercellular junctions. The penetration of dextran molecules with different size and four efflux pump substrate drugs was increased several folds. We identified claudin-4 and -7 junctional proteins by docking studies as potential binding partners and targets of PN159 in the opening of the paracellular pathway. In addition to the tight junction modulator action, the peptide showed cell membrane permeabilizing and antimicrobial effects. This dual action is not general for cell-penetrating peptides (CPPs), since the other three CPPs tested did not show barrier opening effects.
Purpose To design and stabilize Liraglutide loaded poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) proper for oral administration. Methods PLGA NPs were prepared by means of double emulsion solvent evaporation method and optimized by applying 7-factor 2-level Plackett-Burman screening design. Results Spherical shaped NPs with homogeneous distribution, 188.95 nm particle size and 51.81% encapsulation efficiency were obtained. Liraglutide was successfully entrapped in the NPs while maintaining its native amorphous nature, and its structural integrity as well. Conclusion Lira-PLGA NPs with the required Critical Quality Attributes (CQAs) were successfully designed by implementing a 7-factor 8-run Plackett Burman design into the extended Quality by Design (QbD) model, to elucidate the effect of formulation and process variables on the particle size, size-distribution, encapsulation efficiency and surface charge. As the developed nanoparticles maintained the native structure of the active pharmaceutical ingredient (API), they are promising compositions for the further development for the oral delivery of Lira. Graphical Abstract Electronic supplementary material The online version of this article (10.1007/s11095-019-2620-9) contains supplementary material, which is available to authorized users.
There is a pressing need to develop ways to deliver therapeutic macromolecules to their intracellular targets. Certain viral and bacterial proteins are readily internalized in functional form through lipid raft‐mediated/caveolar endocytosis, but mimicking this process with protein cargoes at therapeutically relevant concentrations is a great challenge. Targeting ganglioside GM1 in the caveolar pits triggers endocytosis. A pentapeptide sequence WYKYW is presented, which specifically captures the glycan moiety of GM1 (KD = 24 nm). The WYKYW‐tag facilitates the GM1‐dependent endocytosis of proteins in which the cargo‐loaded caveosomes do not fuse with lysosomes. A structurally intact immunoglobulin G complex (580 kDa) is successfully delivered into live HeLa cells at extracellular concentrations ranging from 20 to 160 nm, and escape of the cargo proteins to the cytosol is observed. The short peptidic WYKYW‐tag is an advantageous endocytosis routing sequence for lipid raft‐mediated/caveolar cell delivery of therapeutic macromolecules, especially for cancer cells that overexpress GM1.
A gyógyszerfejlesztés egyik legnagyobb jelenkori kihívása a fehérjeméretű hatóanyagok hatékony sejtbe való juttatása, hiszen az emlősök sejtmembránja komoly akadályt állít ezen nagyméretű, hidrofil molekulák elé, amelyek specifikus, hatásos és biztonságos gyógyszerjelöltek lehetnének. Ezen molekulák internalizációja elérhető klatrin-független endocitózissal (például lipid-raft mediált/kaveoláris endocitózissal), mely útvonalon gyakran közlekednek endogén fehérjék, bakteriális toxinok (kolera és tetanusz), illetve vírusok (egér poliómavírus és echovírus 1). Az útvonal előnye, hogy a képződött endoszómák csak nagyon hosszú idő után egyesülnek lizoszómákkal, sok esetben azonban ez el is marad. Ez az endocitotikus folyamat egy vonzó célpont a funkcionális, degradáció mentes fehérjebevitelre, hiszen a képződő „szivárgó” endoszómák lehetőséget biztosítanak a rakomány kiszabadulására. A lipid betüremkedések és kaveolák felszíne gazdagon borított glikoszfingolipidekkel, főként mono-, di-, és triszialotetrahexozilgangliozidokkal (GM1, GD1a, GT1b), amelyek a fő receptorai az így bejutó molekuláknak. A gangliozidokhoz való kötődés, és a gangliozidok kötegelése tehát olyan endocitotikus folyamatot indít el, ahol a lizoszómális lebomlás csekély, ezáltal lehetővé teszik a fehérjéknek, hogy eljussanak a sejtplazmába, vagy transzcitózissal más sejtekbe. A jelenleg elérhető sejtbejuttató rendszereknek számos hátrányát ismerjük: a rakomány lizoszómába kerül és lebomlik, esetleg az alkalmazandó koncentráció túl nagy, terápiásan tehát irreleváns. Megoldást jelenthet ezekre, ha megvizsgáljuk és megismerjük annak módját, miként váltanak ki a gangliozidok endocitózist, ezáltal empirikusan értelmezni tudjuk a glikán-kódot, és azt tudatosan alkalmazzuk későbbi sejtbejuttató rendszerek tervezésénél. A különböző gangliozid-kötő molekulák azonosítását célzó kutatások már munkánk előtt elkezdődtek, azonban a nagyaffinitású molekuláris felismerés még várat magára. A GM1 gangliozidhoz kötő molekulák különösen érdekes lehetnek, mert bár számos emlőssejt expresszálja a molekulát, különféle tumorokban feldúsulnak. A fehérje alapú terápiákban az extracelluláris koncentrációtartomány jellemzően 100-500 nM, tehát egy nagyaffinitású kötődés szükséges ahhoz, hogy megfelelő sejtmembránban való dúsulást érjünk el, ezáltal lehetővé téve a hatóanyagok kellő mértékben való beáramlását. Fő célunk a kutatással az volt, hogy nanomoláris koncentrációban juttassunk be fehérje méretű molekulákat lipid-raft mediált endocitózissal humán sejtekbe. Az endogén és exogén proteineket utánzó, nem toxikus peptid jelölőt kívántunk kifejleszteni, ezért kerestük azt a minimális szekvenciát, amely képes specifikusan, nagy affinitással kötődni a GM1 gangliozidhoz. Mivel a receptor molekulánk szerkezete jól ismert, alapos biofizikai jellemzést kívántunk folytatni a kölcsönhatáson, ezáltal utat nyitva egy szerkezet-alapú tervezéshez, amely igen ritka a bejuttató rendszerek kutatásában. Célul tűztük ki, hogy megvizsgáljuk a peptid szekvenciánk sejtbejuttató képességét, miközben szigorúan figyelemmel követtük lehetséges toxicitását, bejutási mechanizmusát és a lizoszómákkal való egyesülésére való hajlamát. Klasszikus gyógyszerkémiai megközelítéssel törekedtünk arra, hogy felállítsunk egy szerkezet-hatás összefüggést, ezáltal átfogóbb képet kaphassunk a kötődési mechanizmusról. Az elvégzett változtatások lehetőséget biztosítanak az enzimatikus stabilitás növelésére, a nagy affinitás megtartásával.
Design strategies were devised for -peptide foldameric analogues of the antiangiogenic anginex with the goal of mimicking the diverse structural features from the unordered conformation to a folded -sheet in response to membrane interactions. Structureactivity relationships were investigated in the light of different -sheet folding levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.