Biometric face recognition is becoming more frequently used in different application scenarios. However, spoofing attacks with facial disguises are still a serious problem for state of the art face recognition algorithms. This work proposes an approach to face verification based on spectral signatures of material surfaces in the short wave infrared (SWIR) range. They allow distinguishing authentic human skin reliably from other materials, independent of the skin type. We present the design of an active SWIR imaging system that acquires four-band multispectral image stacks in real-time. The system uses pulsed small band illumination, which allows for fast image acquisition and high spectral resolution and renders it widely independent of ambient light. After extracting the spectral signatures from the acquired images, detected faces can be verified or rejected by classifying the material as “skin” or “no-skin.” The approach is extensively evaluated with respect to both acquisition and classification performance. In addition, we present a database containing RGB and multispectral SWIR face images, as well as spectrometer measurements of a variety of subjects, which is used to evaluate our approach and will be made available to the research community by the time this work is published.
The dream ofan all-solid state large area x-ray image sensor with digital readout and full dynamic performance will most probably find a first realisation in two-dimensional thin-film amorphous silicon arrays. In this paper we address in particular the evaluation of the limits of the signal/noise ratio in this concept. Using small prototype detectors measurements of MTF and noise power spectra have been made as a function of x-ray dose. The results are given in terms of the detective quantum efficiency (DQE) as a function of dose and spatial frequency. We further present an analysis of the different noise so rces and their dependence on the detector parameters, and we provide estimates on the maximum signals that may be achieved per unit dose. The intrinsic lag of the amorphous silicon photodiodes causes a second problem area with this type ofx-ray detectors. Especially in radiography/fluoroscopy mixed applications, memory effects may not be negligible.
A clinical imaging system based upon an amorphous-Silicon (a-Si) flat dynamic (digital) X-ray image detector (FDXD) has been developed. The objectives of this experimental set-up were to determine the physical image quality and to establish the clinical feasibility of a flat-panel X-ray detector for radiography and fluoroscopy (R&F) applications. The FDXD acquires dynamic X-ray images at high frame rates in both continuous and pulsed fluoroscopic modes, lower frame rate exposures and single shots. The system has been installed in a clinical research room at The General Infirmary, Leeds (UK) and is being evaluated in a variety of universal R&F contrast medium aided examinations, including barium swallows, meals and enema examinations. In addition, general radiographic examinations have been performed. Both the established benefits and possible dniwbacks of this type of system, together with the potenthi solutions, are discussed in this paper. Approach, design and set-up of the system are presented, and the dose efficiency and image quality achieved in clinical operation are explained. The technical and medical phantom images have been evaluated and analyzed. The results of the clinical examinations in mixed applications are discussed. The results of the measurements and examinations performed to date on this experimental FDXD system confirm the potential of this new type of digital X-ray image detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.