The purpose of this study was to use high resolution magnetic resonance imaging (HR-MRI) combined with structure analysis to investigate the trabecular structure of the human proximal femur and to compare this technique with bone mineral density (BMD) using dual energy X-ray absorptiometry (DXA) in the prediction of bone strength in vitro. Thirty-one fresh human proximal femur specimens were examined with HR-MRI using a T1-weighted 3D spinecho-sequence in a coronal plane (voxel size: 0.195 x 0.195 x 0.9 mm and 0.195 x 0.195 x 0.3 mm). In these images structure parameters analogous to standard bone histomorphometry were obtained in a femoral head, neck, and trochanteric region of interest (ROI). In addition, BMD measurements were obtained using DXA and finally, all specimens were tested biomechanically in a materials testing machine, and maximum compressive strength (MCS) was determined. Correlations between BMD and MCS were significant (p <0.01) with R-values up to 0.74. Correlating structure parameters and MCS R-values up to 0.69 (P <0.01) were obtained. Using multivariate regression analysis, combining structure parameters and BMD, improved correlations versus MCS substantially (up to R = 0.93; P <0.01). In conclusion, this study showed that in an experimental setting, structure parameters determined in high resolution MR images of the proximal femur correlated significantly with bone strength. The highest correlations, however, were obtained combining BMD and structure measures.
This MRI and CT based study of 25 patients with thoracic AIS treated by standard open dual rod and dual screw instrumentation demonstrates a migration of the aorta by 31 degrees from a more posterolateral position before surgery to a more anteromedial position after surgery at the curve apex. Scoliosis surgeons should be aware of these changes; any excessive contralateral screw penetration must be avoided at any level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.