The main complication of acquired cystic kidney disease (ACKD) is frequent development of renal tumors, including renal cell carcinoma (RCC). Intratumoral deposition of calcium oxalate (CaOx) is a distinct feature of ACKD-associated RCCs, but several features of this type of RCC are not known. Features of the 30 end-stage renal disease (ESRD)-associated RCCs identified within a 13-year period, including eight with CaOx deposition, were analyzed. Pathologic and clinical features of CaOx positive (+) and negative (-) RCCs were evaluated and compared. The CaOx+ RCCs showed higher tendency for bilaterality and multifocality. Seven tumors displayed distinctive morphologic features characterized by tumor cells with ill-defined cell membrane, abundant granular eosinophilic cytoplasm, large nuclei, and prominent nucleoli. One tumor was of clear cell type. Regardless of histologic type, all tumors displayed a proximal tubular differentiation. No significant difference was noted for tumors' stage, proliferation, and apoptosis rate between the CaOx+ and CaOx- RCCs. CaOx+ RCCs account for a significant portion of all ESRD-associated RCCs. The majority of these RCCs display a distinctive morphologic profile. Proximal tubular cell differentiation in conjunction with ESRD-mediated high serum level may be pathogenetically important for intratumoral CaOx deposition. These RCCs seems to have a relatively good prognosis.
Background Cholinergic neuronal loss is one of the hallmarks of AD related neurodegeneration; however, preclinical promise of α7 nAChR drugs failed to translate into humans. CHRFAM7A , a uniquely human fusion gene, is a negative regulator of α7 nAChR and was unaccounted for in preclinical models. Methods Molecular methods: Function of CHRFAM7A alleles was studied in vitro in two disease relevant phenotypic readouts: electrophysiology and Aβ uptake. Genome edited human induced pluripotent stem cells (iPSC) were used as a model system with the human context. Double blind pharmacogenetic study: We performed double-blind pharmacogenetic analysis on the effect of AChEI therapy based on CHRFAM7A carrier status in two paradigms: response to drug initiation and DMT effect. Mini Mental Status Examination (MMSE) was used as outcome measure. Change in MMSE score from baseline was compared by 2-tailed T-test. Longitudinal analysis of clinical outcome (MMSE) was performed using a fitted general linear model, based on an assumed autoregressive covariance structure. Model independent variables included age, sex, and medication regimen at the time of the first utilized outcome measure (AChEI alone or AChEI plus memantine), APOE4 carrier status (0, 1 or 2 alleles as categorical variables) and CHRFAM7A genotype. Findings The direct and inverted alleles have distinct phenotypes. Functional CHRFAM7A allele classifies the population as 25% non-carriers and 75% carriers. Induced pluripotent stem cell (iPSC) models α7 nAChR mediated Aβ neurotoxicity. Pharmacological readout translates into both first exposure ( p = 0.037) and disease modifying effect ( p = 0.0048) in two double blind pharmacogenetic studies. Interpretation CHRFAM7A accounts for the translational gap in cholinergic strategies in AD. Clinical trials not accounting for this uniquely human genetic factor may have rejected drug candidates that would benefit 25% of AD. Reanalyses of the completed trials using this pharmacogenetic paradigm may identify effective therapy. Funding:
The α7 nicotinic acetylcholine receptor (α7nAChR) has been a promising target for diseases affecting cognition and higher cortical functions; however, the effect observed in animal models failed to translate into human clinical trials identifying a translational gap. CHRFAM7A is a human-specific fusion gene with properties that enable incorporation into the α7nAChR and, being human specific, CHRFAM7A effect was not accounted for in preclinical studies. We hypothesized that CHRFAM7A may account for this translational gap and understanding its function may offer novel insights when exploring α7nAChR as a drug target. CHRFAM7A is present in different copy number variations (CNV) in the human genome with high frequency. To study the functional consequences of the presence of the CHRFAM7A, two induced pluripotent stem cell (iPSC) lines (0 copy and 1 copy direct) were developed. The 0 copy line was rescued with CHRFAM7A transfection to control for genetic heterogeneity. As readouts for genotype–phenotype correlation, α7nAChR synaptic transmission and amyloid beta 1–42 (Aβ1–42) uptake were tested. Synaptic transmission in the presence of CHRFAM7A demonstrated that PNU-modulated desensitization of α7nAChR currents increased as a function of CHRFAM7A dosage. CHRFAM7A mitigated the dose response of Aβ1–42 uptake suggesting a protective effect beyond physiological concentrations. Furthermore, in the presence of CHRFAM7A Aβ1–42 uptake activated neuronal interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) without activating the canonical inflammasome pathway. Lead optimization may identify more potent molecules when the screen has a model harboring CHRFAM7A. Incorporating pharmacogenetics into clinical trials may enhance signals in efficacy measures.
Mutations in the EGR2 gene cause a spectrum of Charcot-Marie-Tooth disease and related inherited peripheral neuropathies. We ascertained ten consecutive patients with various EGR2 mutations, report a novel de novo mutation, and provide longitudinal clinical data to characterize the natural history of the peripheral neuropathy. We confirmed that respiratory compromise and cranial nerve dysfunction are commonly associated with EGR2 mutations and can be useful in guiding molecular diagnosis. We also contrast morphological studies in the context of the I268N homozygous recessive mutation affecting the NAB repressor binding site and the R359W dominant-negative mutation in the zinc-finger domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.