ITSG‐Grace2018 is a new series of GRACE‐only gravity field solutions based on reprocessed GRACE observation data (L1B RL03) and the latest atmosphere and ocean dealiasing product (AOD1B RL06). It includes unconstrained monthly and constrained daily solutions, as well as a high‐resolution static gravity field. Compared to the previous ITSG release, we implemented a number of improvements within the processing chain and use updated background models. In an effort to better model all known error sources, we propagate synthetic orientation uncertainties of the star camera assembly to the antenna offset correction for intersatellite ranging observations. This enables the disentanglement of the stationary noise of the K‐Band system and the nonstationary noise of the antenna offset correction. We further incorporated uncertainties of the atmosphere and ocean dealiasing product to reduce temporal aliasing effects. To mitigate errors in the applied ocean tide model, we used constrained GRACE estimates of selected tidal constituents as an additional background model. Variability over quiet ocean areas suggests a 27% to 46% lower noise level compared to the current spherical harmonic solutions of the official processing centers (300 km Gaussian filter applied). To ensure that the low noise floor is not accompanied by signal loss, we examined drainage basin averages, which showed consistent amplitudes with the official GRACE time series. These evaluations lead to the conclusion that ITSG‐Grace2018 is a state‐of‐the‐art GRACE time series which exhibits an excellent signal‐to‐noise ratio.
After more than 4.5 years in orbit, the Gravity field and steady‐state Ocean Circulation Explorer (GOCE) mission ended with the reentry of the satellite on 11 November 2013. This publication serves as a reference for the fifth gravity field model based on the time‐wise approach (EGM_TIM_RL05), a global model only determined from GOCE observations. Due to its independence of any other gravity data, a consistent and homogeneous set of spherical harmonic coefficients up to degree and order 280 (corresponding to spatial resolution of 71.5 km on ground) is provided including a full covariance matrix characterizing the uncertainties of the model. The associated covariance matrix realistically describes the model quality. It is the first model which is purely based on GOCE including all observations collected during the entire mission. The achieved mean global accuracy is 2.4 cm in terms of geoid heights and 0.7 mGal for gravity anomalies at a spatial resolution of 100 km.
Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step. B Norbert Zehentner
SummaryDegree-error RMS; geoid error Formal errors; empirical errors & geoid height differences (w.r.t. ITG-Grace2010s)
It is of great interest to numerous geophysical studies that the time series of global gravity field models derived from Gravity Recovery and Climate Experiment (GRACE) data remains uninterrupted after the end of this mission. With this in mind, some institutes have been spending efforts to estimate gravity field models from alternative sources of gravimetric data. This study focuses on the gravity field solutions estimated from Swarm global positioning system (GPS) data, produced by the Astronomical Institute of the University of Bern, the Astronomical Institute (ASU, Czech Academy of Sciences) and Institute of Geodesy (IfG, Graz University of Technology). The three sets of solutions are based on different approaches, namely the celestial mechanics approach, the acceleration approach and the shortarc approach, respectively. We derive the maximum spatial resolution of the time-varying gravity signal in the Swarm gravity field models to be degree 12, in comparison with the more accurate models obtained from K-band ranging data of GRACE. We demonstrate that the combination of the GPS-driven models produced with the three different approaches improves the accuracy in all analysed monthly solutions, with respect to any of them. In other words, the combined gravity field model consistently benefits from the individual strengths of each separate solution. The improved accuracy of the combined model is expected to bring benefits to the geophysical studies during the period when no dedicated gravimetric mission is operational.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.