High-NA EUV lithography is currently under development to keep up with device node scaling with smaller feature sizes. In this paper, the most recent advances in EUV patterning using metal oxide resists (MOR) and chemically amplified resists (CAR) are discussed. A newly developed resist development method (ESPERT™) was examined on MOR with 24 nm pitch line and space (L/S) patterns and 32 nm pitch pillars for preparation of high-NA EUV patterning. The patterning results showed improved sensitivity and pattern collapse margin. CAR contact hole patterning at 28 nm pitch was also examined by stochastic lithography simulation. The simulation results indicate that resist film thickness needs to be optimized for target pitches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.