Fluoride-releasing materials can be expected to inhibit the secondary caries. The aim;of this study was to evaluate the effect of fluoride-releasing adhesives on inhibition of secondary caries in outer and wall lesions. Two commercial fluoride-releasing adhesives, Reactmer bond (RB) and One-up bond F (OB), and a commercial adhesive without fluoride release, Mac-bond II (MB), were used prior to placement of restorative materials without fluoride release, Lite-fil II A (LF) and Estelite (EL), and a fluoride-releasing restorative material, Reactmer paste (RP). Class V cavities prepared on extracted human premolars were restored with various combinations of the materials: MB/EL, OB/EL, RB/LF and RB/RP. The restored teeth were incubated in bacterial medium containing sucrose with Streptoccus mutans for 14 days. Microradiographs of specimens showed no wall lesions in all groups and an acid-resistant layer adjacent to the restoration in the caries-like lesion. OB/EL, RB/LF and RB/RP groups showed thicker layers than the MB/EL group. The RB/RP group formed the shallowest outer lesion among all groups. These results indicate that fluoride-releasing adhesives are effective in the prevention of wall lesions but exhibit little outer lesion inhibition. Therefore, combined restoration using a fluoride-releasing adhesive and fluoride-releasing restorative material should be selected to inhibit secondary caries.
The purpose of this study was to analyse quantitatively the early bacterial plaque formed on resin composite and human enamel in vivo, using a confocal laser scanning microscope. Test pieces of resin composite and human enamel were retained at the buccal surfaces of the upper first molars of three volunteers for 4, 8 and 24 h to allow plaque formation. Then, the specimens were immersed in propidium iodide in phosphate-buffered saline to stain adherent bacteria and observed with a confocal laser scanning microscope. The ratios of the area occupied by microorganisms to the whole area of the optical field were calculated using a photo-image analysis system. The thickness of the plaque was also measured. Quantitative analysis revealed that the resin composite showed significantly higher bacterial adherence than human enamel throughout the test period. A difference was noticed in the morphology of the bacteria between the two groups. Our findings suggest that resin composite shows higher bacteria adherence during early plaque formation compared with human enamel. In addition, the present findings may suggest a presence of the difference in bacterial composition of plaque in both specimens.
The aim of this study was to evaluate the effect of fluoride-releasing adhesive systems on human decalcified dentin in vitro. Two fluoride-releasing adhesive systems, Reactmer bond (RB, Shofu) and ABF (AF, Kuraray), an experimental system, and a commercial adhesive system without fluoride release, SE bond (SE, Kuraray), were used in this study. The amount of fluoride release from adhesive in deionized water was measured every week for 10 weeks. Class V cavities were prepared on extracted human pre-molars and decalcified dentin was promoted by using a bacterial caries induction system at the cavity floor. The cavities preserving decalcified dentin were restored with resin composite (AP-X, Kuraray) after treatment by each adhesive system. The specimens without treatment by adhesive system and restoration were used for control. The specimens with restoration were then incubated for 4 weeks at 37 degrees C, 100% humidity. Microradiographs of the specimens showed that the radiopacities of the decalcified dentin layers in RB and AF groups with fluoride release were significantly higher than those in SE or control groups without fluoride release. This result suggested that the fluoride-releasing adhesive systems enhanced mineralization of decalcified dentin.
Glucosyltransferase-I (GTF-I: 175 kDa) of a cariogenic bacterium, Streptococcus sobrinus 6715, mediates the conversion of water-soluble dextran (alpha-1,6-glucan) into a water-insoluble form by making numerous alpha-1,3-glucan branches along the dextran chains with sucrose as the glucosyl donor. The structures and catalytic properties were compared for two GTF-I fragments, GTF-I' (138 kDa) and GS (110 kDa). Both lack the N-terminal 84 residues of GTF-I. While GTF-I' still contains four of the six C-terminal repeats characteristic of streptococcal glucosyltransferases, GS lacks all of them. Electron microscopy of negatively stained samples indicated a double-domain structure for GTF-I', consisting of a spherical head with a smaller spherical tail, which was occasionally seen as a long extension. GS was seen just as the head portion of GTF-I'. In the absence of dextran, both fragments simply hydrolyzed sucrose with similar K(m) and k(cat) values at low concentrations (<5 mM). At higher sucrose concentrations (>10 mM), however, GTF-I' exhibited glucosyl transfer activity to form insoluble alpha-1, 3-glucans. So did GS, but less efficiently. Dextran increased the rate and efficiency of the glucosyl transfer by GTF-I'. On removal of the C-terminal repeats of GTF-I' by mild trypsin treatment, this dextran-stimulated transfer was completely lost and the dextran-independent transfer became less efficient. These results indicate that the N-terminal two-thirds of the GTF-I sequence are organized as a structurally and functionally independent domain to catalyze not only sucrose hydrolysis but also glucosyl transfer to form alpha-1,3-glucan chains, although not efficiently; the C-terminal repeat increases the efficiency of the intrinsic glucosyl transfer by the N-terminal domain as well as rendering the whole molecule primer-dependent for far more efficient insoluble glucan synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.