The purpose of this study was to analyse quantitatively the early bacterial plaque formed on resin composite and human enamel in vivo, using a confocal laser scanning microscope. Test pieces of resin composite and human enamel were retained at the buccal surfaces of the upper first molars of three volunteers for 4, 8 and 24 h to allow plaque formation. Then, the specimens were immersed in propidium iodide in phosphate-buffered saline to stain adherent bacteria and observed with a confocal laser scanning microscope. The ratios of the area occupied by microorganisms to the whole area of the optical field were calculated using a photo-image analysis system. The thickness of the plaque was also measured. Quantitative analysis revealed that the resin composite showed significantly higher bacterial adherence than human enamel throughout the test period. A difference was noticed in the morphology of the bacteria between the two groups. Our findings suggest that resin composite shows higher bacteria adherence during early plaque formation compared with human enamel. In addition, the present findings may suggest a presence of the difference in bacterial composition of plaque in both specimens.
In order to improve the magnetic properties of PLD-made Pr-Fe-B thick-film magnets deposited on Si substrates, an adoption of a glass buffer layer was carried out. The glass layer could be fabricated under the deposition rate of approximately 70 μm/h on a Si substrate using a Nd-YAG pulse laser in the vacuum atmosphere. The use of the layer enabled us to reduce the Pr content without a mechanical destruction and enhance (BH)max value by approximately 20 kJ/m3 compared with the average value of non-buffer layered Pr-Fe-B films with almost the same thickness. It is also considered that the layer is also effective to apply a micro magnetization to the films deposited on Si ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.