B-RTO is an effective method for gastric varices with gastrorenal shunt and provides lower recurrence and bleeding rates. We believe that B-RTO can become a standard treatment for gastric varices with gastrorenal shunt, although treatment of worsened esophageal varices may be necessary after B-RTO.
Acute aortic dissection (AAD) is caused by the disruption of intimomedial layer of the aortic walls, which is immediately life-threatening. Although recent studies indicate the importance of proinflammatory response in pathogenesis of AAD, the mechanism to keep the destructive inflammatory response in check is unknown. Here, we report that induction of tenascin-C (TNC) is a stress-evoked protective mechanism against the acute hemodynamic and humoral stress in aorta. Periaortic application of CaCl2 caused stiffening of abdominal aorta, which augmented the hemodynamic stress and TNC induction in suprarenal aorta by angiotensin II infusion. Deletion of Tnc gene rendered mice susceptible to AAD development upon the aortic stress, which was accompanied by impaired TGFβ signaling, insufficient induction of extracellular matrix proteins and exaggerated proinflammatory response. Thus, TNC works as a stress-evoked molecular damper to maintain the aortic integrity under the acute stress.
BackgroundAbdominal aortic aneurysm (AAA) is a potentially life‐threatening disease that is common in older individuals. Currently, therapeutic options are limited to surgical interventions. Although it has long been known that AAA tissue is enriched in B cells and immunoglobulins, their involvement in AAA pathogenesis remains controversial.Methods and ResultsWe investigated the role of B cells and immunoglobulins in a murine model of AAA, induced with a periaortic application of CaCl2, and in human AAA. Both human and mouse AAA tissue showed B‐cell infiltration. Mouse AAA tissue showed deposition of IgG and activation of Syk, a key molecule in B‐cell activation and immunoglobulin function, which were localized to infiltrating cells including B cells and macrophages. B‐cell–deficient muMT mice showed suppression of AAA development that was associated with reduced activation of Syk and less expression of matrix metalloproteinase‐9. Administration of exogenous immunoglobulins restored the blunted Syk activation and AAA development in muMT mice. Additionally, exogenous immunoglobulins induced interleukin‐6 and metalloproteinase‐9 secretions in human AAA tissue cultures. Furthermore, administration of R788, a specific Syk inhibitor, suppressed AAA expansion, reduced inflammatory response, and reduced immunoglobulin deposition in AAA tissue.ConclusionsFrom these results, we concluded that B cells and immunoglobulins participated in AAA pathogenesis by promoting inflammatory and tissue‐destructive activities. Finally, we identified Syk as a potential therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.