Flow cytometry was used to determine whether activated platelets and platelet-derived microparticles can be detected directly in whole blood after a hemostatic insult. Two different in vivo models of platelet activation were examined: (1) a standardized bleeding time, and (2) cardiopulmonary bypass. Platelets and microplatelets were identified with a biotinylated anti-glycoprotein (GP)lb antibody and a fluorophore, phycoerythrin-streptavidin. Microparticles were distinguished from platelets by light scatter. Activated platelets were detected with three fluorescein-labeled monoclonal antibodies (MoAbs): (1) PAC1, which binds to the activated form of GPIIb-IIIa; (2) 9F9, a newly developed antibody that is specific for fibrinogen bound to the surface of activated platelets; and (3) S12, which binds to an alpha- granule membrane protein expressed on the platelet surface after granule secretion. In nine normal subjects, bleeding times ranged from 4.5 to 7.5 minutes. Over this time, there was a progressive increase in the amount of PAC1, 9F9, and S12 bound to platelets in blood emerging from the bleeding time wound. With all three antibodies, platelet activation was apparent as early as 30 seconds after the incision (P less than .03). Activation was accompanied by a progressive decrease in the concentration of platelets in blood from the wound, while the concentration of microparticles increased slightly. In nine patients undergoing open heart surgery, 1 hour of cardiopulmonary bypass caused a 2.2-fold increase in the relative proportion of microparticles in circulating blood (P less than .001). Moreover, bypass caused platelet activation as evidenced by a mean two- to threefold increase in PAC1 binding to platelets. Although this increase was significant (P less than .02), PAC1 binding exceeded the normal range for unstimulated control platelets in only 5 of 9 patients, and 9F9 and S12 binding exceeded the normal range in only two patients. Taken together, these studies demonstrate that it is now feasible using flow cytometry to evaluate the extent of platelet activation and the presence of platelet- derived microparticles in the circulation of humans.
Flow cytometry was used to determine whether activated platelets and platelet-derived microparticles can be detected directly in whole blood after a hemostatic insult. Two different in vivo models of platelet activation were examined: (1) a standardized bleeding time, and (2) cardiopulmonary bypass. Platelets and microplatelets were identified with a biotinylated anti-glycoprotein (GP)lb antibody and a fluorophore, phycoerythrin-streptavidin. Microparticles were distinguished from platelets by light scatter. Activated platelets were detected with three fluorescein-labeled monoclonal antibodies (MoAbs): (1) PAC1, which binds to the activated form of GPIIb-IIIa; (2) 9F9, a newly developed antibody that is specific for fibrinogen bound to the surface of activated platelets; and (3) S12, which binds to an alpha- granule membrane protein expressed on the platelet surface after granule secretion. In nine normal subjects, bleeding times ranged from 4.5 to 7.5 minutes. Over this time, there was a progressive increase in the amount of PAC1, 9F9, and S12 bound to platelets in blood emerging from the bleeding time wound. With all three antibodies, platelet activation was apparent as early as 30 seconds after the incision (P less than .03). Activation was accompanied by a progressive decrease in the concentration of platelets in blood from the wound, while the concentration of microparticles increased slightly. In nine patients undergoing open heart surgery, 1 hour of cardiopulmonary bypass caused a 2.2-fold increase in the relative proportion of microparticles in circulating blood (P less than .001). Moreover, bypass caused platelet activation as evidenced by a mean two- to threefold increase in PAC1 binding to platelets. Although this increase was significant (P less than .02), PAC1 binding exceeded the normal range for unstimulated control platelets in only 5 of 9 patients, and 9F9 and S12 binding exceeded the normal range in only two patients. Taken together, these studies demonstrate that it is now feasible using flow cytometry to evaluate the extent of platelet activation and the presence of platelet- derived microparticles in the circulation of humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.