A kinetic model for DAF is presented. The author's kinetic model consists of the equations for describing a process of bubble-floc collision and attachment in a mixing zone, and a rise velocity of bubble-floc agglomerates in a flotation tank. The attachment process is formulated on a population balance model with bubbles and flocs as a flocculation in a turbulent flow. The rise velocity of bubble-floc agglomerates is formulated with size of flocs and composition of flocs including the floc density function and attached bubble number. The experimental verification was carried out, using a batch flotation tested and a mini-plant with synthetic clay suspension and colored water. The results successfully verify the validity of the model. From a given condition such as floc size and attached bubble number, the rate and extent of removal by DAF can be readily assessed by the model. A single-collector collision model, often discussed in some occasions, seems to be not useful to describe the DAF process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.