Using the carbonization process, single-crystalline SiC films were grown at substrate temperature (Tsub) in the range of 750–1050 °C by the gas-source molecular-beam epitaxial method. This process was performed by using C2H4 gas and a special growth method in which the temperature was raised at a predetermined rate (RT) during growth. To realize the growth of single-crystalline carbonized films, it was found that a C2H4 gas pressure PC2H4=8×10−5 Torr and rising rate RT=25–25/3 °C/min were necessary. After the carbonization process, essential growth of SiC films using SiHCl3 and C2H4 gases in the range of gas pressure ratios PSiHCl3/PC2H4= (1)/(3) –5 (PSiHCl3=1–5×10−5 Torr) at Tsub=1000 °C was performed. In these all experimental ranges, single-crystalline 3C-SiC films could be grown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.