Insect-scale aerial vehicles are useful tools for communication, environmental sensing and surveying confined spaces. However, the lack of lightweight high-power-density batteries has limited the untethered flight durations of these micro aerial vehicles. Wireless power transmission using radiofrequency electromagnetic waves could potentially offer transmissivity through obstacles, wave-targeting/focusing capabilities and non-mechanical steering of the vehicles via phased-array antennas. But the use of radiofrequency power transmission has so far been limited to larger vehicles. Here we show that a wireless radiofrequency power supply can be used to drive an insect-scale flapping-wing aerial vehicle. We use a sub-gram radiofrequency power receiver with a power-to-weight density of 4,900 W kg–1, which is five times higher than that of off-the-shelf lithium polymer batteries of similar mass. With this system, we demonstrate the untethered take off of the flapping-wing micro aerial vehicle. Our RF-powered aircraft has a mass of 1.8 g and is more than 25 times lighter than previous radiofrequency-powered micro aerial vehicles.
Piezoelectric actuation is a promising principle for insect-scaled robots. A major concern while utilizing a piezoelectric actuator is energy loss due to its parasitic capacitance. In this paper, we propose a new concept to recover the charge stored in the parasitic capacitance; it requires only three additional lightweight passive components: two diodes and a resistor. The advantages of our concept are its small additional mass and simple operating procedure compared with existing charge recovery circuits. We provided a guideline for selecting a resistor using a simplified theoretical model and found that half of the charge can be recovered by employing a resistor that has a resistance sufficiently larger than the forward resistance of the additional diode. In addition, we experimentally demonstrated the concept. With a capacitive load (as a replacement for the piezoelectric actuator), it was successfully observed that the proposed concept decreased the power consumption to 58% of that in a circuit without charge recovery. Considering micro aerial vehicle (MAV) applications, we measured the lift-to-power efficiency of a flapping wing piezoelectric actuator by applying the proposed concept. The lift force was not affected by charge recovery; however, the power consumption was reduced. As a result, the efficiency was improved to 30.0%. We expect that the proposed circuit will contribute to the advancement of energy-saving microrobotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.