Losses and damages caused by natural disasters have negatively impacted poverty alleviation and human development and undermine the achievement of the Millennium Development Goals (MDGs). However, disaster issues were not included in MDG targets set up in 2000. A new development agenda, Sustainable Development Goals (SDGs), was approved in the UN General Assembly in September 2015. In the SDGs, disaster issues are included in many targets such as target 11.5. To appropriately set targets and prepare monitoring measures for disaster-related issues, quantitatively measurable indicators of impacts of disaster risk reduction on economic growth and poverty alleviation should be prepared. In addition, to promote disaster prevention measures, we need to convince policy makers that such measures are highly essential for a country’s development and are cost-effective. Although the cost-effectiveness of single disaster prevention projects has been studied, aggregate effectiveness of these projects at a national level has not been presented. This study proposes a simple method to explain the cost-effectiveness of flood protection investment in Japan post World War II by using national aggregate data.
The reduction of CO 2 emission by the transport sector is necessary to be realized the low carbon society. In the near future, further CO 2 emission reduction is expected by the diffusion of PHEV. The aim of this study was to evaluate the potential of PHEV to reduce CO 2 emission based on real-world driving data (probe car data) and simulation. The probe car data of 35 conventional HEVs from April to August in 2011 were analyzed. The type of simulated PHEV system was all electric range, which operated only by battery power as long as available battery capacity was remaining (EV mode) , and then operated like conventional HEV after battery was depleted (HEV mode). Charging frequency was once a day at home after midnight as a realistic scenario. The results showed that the travel distance of 43% was converted to EV mode, and the gasoline consumption was reduced by 44%. The CO 2 emission was totally reduced by 17% considering electric power consumption. CO 2 emissions of each vehicle were reduced by 1-44%. CO 2 reduction amount of each vehicle varied widely reflecting their each own ways of car use and operating conditions. It is indicated that the diffusion of PHEV is a realistic and efficient measure to reduce CO 2 emissions in consideration of actual car use and operating conditions. Furthermore, low carbon power supply as well as diffusion of PHEV is more effective to CO 2 reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.