We analyzed a metagenome of the bacterial community associated with the taproot of sugar beet (Beta vulgaris L.) in order to investigate the genes involved in plant growth-promoting traits (PGPTs), namely 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indole acetic acid (IAA), N2 fixation, phosphate solubilization, pyrroloquinoline quinone, siderophores, and plant disease suppression as well as methanol, sucrose, and betaine utilization. The most frequently detected gene among the PGPT categories encoded β-1,3-glucanase (18 per 105 reads), which plays a role in the suppression of plant diseases. Genes involved in phosphate solubilization (e.g., for quinoprotein glucose dehydrogenase), methanol utilization (e.g., for methanol dehydrogenase), siderophore production (e.g. isochorismate pyruvate lyase), and ACC deaminase were also abundant. These results suggested that such PGPTs are crucially involved in supporting the growth of sugar beet. In contrast, genes for IAA production (iaaM and ipdC) were less abundant (~1 per 105 reads). N2 fixation genes (nifHDK) were not detected; bacterial N2 -fixing activity was not observed in the 15N2 -feeding experiment. An analysis of nitrogen metabolism suggested that the sugar beet microbiome mainly utilized ammonium and nitroalkane as nitrogen sources. Thus, N2 fixation and IAA production did not appear to contribute to sugar beet growth. Taxonomic assignment of this metagenome revealed the high abundance of Mesorhizobium, Bradyrhizobium, and Streptomyces, suggesting that these genera have ecologically important roles in the taproot of sugar beet. Bradyrhizobium-assigned reads in particular were found in almost all categories of dominant PGPTs with high abundance. The present study revealed the characteristic functional genes in the taproot-associated microbiome of sugar beet, and suggest the opportunity to select sugar beet growth-promoting bacteria.
Useful light interception during reproductive stages is very important for soybean {Glycine max (L.) Merr.) dry matter production. The objective of this experiment was to investigate the light utilizatiou in the canopy for yield, and its components in the case of arranging branch direction to row direction with flat type (1/2 phyllotaxy) soybean. The field study was conducted in the field at Niigata University on a loamy sand soil at 25, 16 and 9 plants m"^ in 1994, 1995 and 1996, using cultivar 'Miyagishirome' (Maturity Group VII or VIII, phyllotaxy 1/2; branches develop flatly) with treatments so that branches developed at right angles direction (Type R) and in a parallel direction (Type P) to the direction of the row.Total dry weight (TDW) was greater in Type R than in Type P. A higher leaf area index (LAI) was shown in Type R than in Type P in each plant density among the three years. More light penetrated into the canopy in Type R than in Type P. Higher TDW and LAI were produced by effective light interception at the canopy of Type R.Yield and its components were greater in higher than lower density and tended to be greater in Type R than it! Type P. Increased yield depend on seed, pod and node number m"l The increase of yield components in Type R was suggested to be due to favorable light condition in the canopy, compared with Type P.
The whiteness of cooked rice and rice cakes was evaluated using a portable spectrophotometer with a whiteness index (WI). Also, by using boiled rice for measurement of Mido values by Mido Meter, it was possible to infer the whiteness of cooked rice without rice cooking. In the analysis of varietal differences of cooked rice, ‘Tsuyahime’, ‘Koshihikari’ and ‘Koshinokaori’ showed high whiteness, while ‘Satonoyuki’ had inferior whiteness. The whiteness of rice cakes made from ‘Koyukimochi’ and ‘Dewanomochi’ was higher than the whiteness of those made from ‘Himenomochi’ and ‘Koganemochi’. While there was a significant correlation (r = 0.84) between WI values and whiteness scores of cooked rice by the sensory test, no correlation was detected between the whiteness scores and Mido values, indicating that the values obtained by a spectrophotometer differ from those obtained by a Mido Meter. Thus, a spectrophotometer may be a novel device for measurement of rice eating quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.