Harris Hawks Optimization (HHO) algorithm is a new metaheuristic algorithm, inspired by the cooperative behavior and chasing style of Harris' Hawks in nature called surprise pounce. HHO demonstrated promising results compared to other optimization methods. However, HHO suffers from local optima and population diversity drawbacks. To overcome these limitations and adapt it to solve feature selection problems, a novel metaheuristic optimizer, namely Chaotic Harris Hawks Optimization (CHHO), is proposed. Two main improvements are suggested to the standard HHO algorithm. The first improvement is to apply the chaotic maps at the initialization phase of HHO to enhance the population diversity in the search space. The second improvement is to use the Simulated Annealing (SA) algorithm to the current best solution to improve HHO exploitation. To validate the performance of the proposed algorithm, CHHO was applied on 14 medical benchmark datasets from the UCI machine learning repository. The proposed CHHO was compared with the original HHO and some famous and recent metaheuristics algorithms, containing Grasshopper Optimization Algorithm (GOA), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Butterfly Optimization Algorithm (BOA), and Ant Lion Optimizer (ALO). The used evaluation metrics include the number of selected features, classification accuracy, fitness values, Wilcoxon's statistical test (P-value), and convergence curve. Based on the achieved results, CHHO confirms its superiority over the standard HHO algorithm and the other optimization algorithms on the majority of the medical datasets.
The rapid growth in biomedical datasets has generated high dimensionality features that negatively impact machine learning classifiers. In machine learning, feature selection (FS) is an essential process for selecting the most significant features and reducing redundant and irrelevant features. In this study, an equilibrium optimization algorithm (EOA) is used to minimize the selected features from high-dimensional medical datasets. EOA is a novel metaheuristic physics-based algorithm and newly proposed to deal with unimodal, multi-modal, and engineering problems. EOA is considered as one of the most powerful, fast, and best performing population-based optimization algorithms. However, EOA suffers from local optima and population diversity when dealing with high dimensionality features, such as in biomedical datasets. In order to overcome these limitations and adapt EOA to solve feature selection problems, a novel metaheuristic optimizer, the so-called improved equilibrium optimization algorithm (IEOA), is proposed. Two main improvements are included in the IEOA: The first improvement is applying elite opposite-based learning (EOBL) to improve population diversity. The second improvement is integrating three novel local search strategies to prevent it from becoming stuck in local optima. The local search strategies applied to enhance local search capabilities depend on three approaches: mutation search, mutation–neighborhood search, and a backup strategy. The IEOA has enhanced the population diversity, classification accuracy, and selected features, and increased the convergence speed rate. To evaluate the performance of IEOA, we conducted experiments on 21 biomedical benchmark datasets gathered from the UCI repository. Four standard metrics were used to test and evaluate IEOA’s performance: the number of selected features, classification accuracy, fitness value, and p-value statistical test. Moreover, the proposed IEOA was compared with the original EOA and other well-known optimization algorithms. Based on the experimental results, IEOA confirmed its better performance in comparison to the original EOA and the other optimization algorithms, for the majority of the used datasets.
Abstract-This research aims to develop a job web portal for the students in the Faculty of Computer Science and Information Technology (FCSIT), University of Malaya (UM). The main aims of this portal are to connect to the industries and acts as an online recruitment to support the students to find the right IT job after graduation. Furthermore, this system enhances the understanding concept and importance of the job portal for students in the universities. A survey was conducted to identify the students' problems with the existing portal of the faculty and to gather their requirements which can be incorporated in to the portal to be developed.Index Terms-Knowledge sharing, web portal, job portal, online recruitment.
New technologies, especially, the Internet have made a huge impact on knowledge management and information dissemination in education. The web portal as a knowledge management system is very popular topics in many organizations including universities. Generally, a web portal defines as a gateway to online network accessible resources through the intranet, extranet or Internet. This study develops a knowledge portal for the students in the Faculty of Computer Science and Information Technology (FCSIT), University of Malaya (UM). The goals of this portal are to provide information for the students to help them to choose the right courses and major that are relevant to their intended future jobs or career in IT. A quantitative approach used as the selected method for this research. Quantitative method provides an easy and useful way to collect data from a large sample population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.