Our results suggest the chronic health effects associated with within-city gradients in exposure to PM2.5 may be even larger than previously reported across metropolitan areas. We observed effects nearly 3 times greater than in models relying on comparisons between communities. We also found specificity in cause of death, with PM2.5 associated more strongly with ischemic heart disease than with cardiopulmonary or all-cause mortality.
The authors address two research questions: (1) Are populations with lower socioeconomic status, compared with people of higher socioeconomic status, more likely to be exposed to higher levels of particulate air pollution in Hamilton, Ontario, Canada? (2) How sensitive is the association between levels of particulate air pollution and socioeconomic status to specification of exposure estimates or statistical models? Total suspended particulate (TSP) data from the twenty-three monitoring stations in Hamilton (1985–94) were interpolated with a universal kriging procedure to develop an estimate of likely pollution values across the city based on annual geometric means and extreme events. Comparing the highest with the lowest exposure zones, the interpolated surfaces showed more than a twofold increase in TSP concentrations and more than a twentyfold difference in the probability of exposure to extreme events. Exposure estimates were related to socioeconomic and demographic data from census tract areas by using ordinary least squares and simultaneous autoregressive (SAR) models. Control for spatial autocorrelation in the SAR models allowed for tests of how robust specific socioeconomic variables were for predicting pollution exposure. Dwelling values were significantly and negatively associated with pollution exposure, a result robust to the method of statistical analysis. Low income and unemployment were also significant predictors of exposure, although results varied depending on the method of analysis. Relatively minor changes in the statistical models altered the significant variables. This result emphasizes the value of geographical information systems (GIS) and spatial statistical techniques in modelling exposure. The result also shows the importance of taking spatial autocorrelation into account in future justice – health studies.
The objective of this paper is to model determinants of intraurban variation in ambient concentrations of nitrogen dioxide (NO2) in Toronto, Canada, with a land use regression (LUR) model. Although researchers have conducted similar studies in Europe, this work represents the first attempt in a North American setting to characterize variation in traffic pollution through the LUR method. NO2 samples were collected over 2 wk using duplicate two-sided Ogawa passive diffusion samplers at 95 locations across Toronto. Independent variables employed in subsequent regression models as predictors of NO2 were derived by the Arc 8 geographic information system (GIS). Some 85 indicators of land use, traffic, population density, and physical geography were tested. The final regression model yielded a coefficient of determination (R2) of .69. For the traffic variables, density of 24-h traffic counts and road measures display positive associations. For the land use variables, industrial land use and counts of dwellings within 2000 m of the monitoring location were positively associated with NO2. Locations up to 1500 m downwind of major expressways had elevated NO2 levels. The results suggest that a good predictive surface can be derived for North American cities with the LUR method. The predictive maps from the LUR appear to capture small-area variation in NO2 concentrations. These small-area variations in traffic pollution are probably important to the exposure experience of the population and may detect health effects that would have gone unnoticed with other exposure estimates.
BackgroundChronic exposure to traffic-related air pollution (TRAP) may contribute to premature mortality, but few studies to date have addressed this topic.ObjectivesIn this study we assessed the association between TRAP and mortality in Toronto, Ontario, Canada.MethodsWe collected nitrogen dioxide samples over two seasons using duplicate two-sided Ogawa passive diffusion samplers at 143 locations across Toronto. We calibrated land use regressions to predict NO2 exposure on a fine scale within Toronto. We used interpolations to predict levels of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) and ozone levels. We assigned predicted pollution exposures to 2,360 subjects from a respiratory clinic, and abstracted health data on these subjects from medical billings, lung function tests, and diagnoses by pulmonologists. We tracked mortality between 1992 and 2002. We used standard and multilevel Cox proportional hazard models to test associations between air pollution and mortality.ResultsAfter controlling for age, sex, lung function, obesity, smoking, and neighborhood deprivation, we observed a 17% increase in all-cause mortality and a 40% increase in circulatory mortality from an exposure contrast across the interquartile range of 4 ppb NO2. We observed no significant associations with other pollutants.ConclusionsExposure to TRAP was significantly associated with increased all-cause and circulatory mortality in this cohort. A high prevalence of cardiopulmonary disease in the cohort probably limits inference of the findings to populations with a substantial proportion of susceptible individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.