The genetically transformed hairy root line LRT 7.31 obtained by infecting leaf explants of Lopezia racemosa Cav with the Agrobacterium rhizogenes strain ATCC15834/pTDT, was evaluated to identify the anti-inflammatory and cytotoxic compounds reported previously for the wild plant. After several subcultures of the LRT 7.31 line, the bio-guided fractionation of the dichloromethane–methanol (1:1) extract obtained from dry biomass afforded a fraction that showed important in vivo anti-inflammatory, and in vitro cytotoxic activities. Chemical separation of the active fraction allowed us to identify the triterpenes ursolic (1) and oleanolic (2) acids, and (23R)-2α,3β,23,28-tetrahydroxy-14,15-dehydrocampesterol (3) as the anti-inflammatory principles of the active fraction. A new molecule 3 was characterized by spectroscopic analysis of its tetraacetate derivative 3a. This compound was not described in previous reports of callus cultures, in vitro germinated seedlings and wild plant extracts of whole L. racemosa plants. The anti-inflammatory and cytotoxic activities displayed by the fraction are associated to the presence of compounds 1–3. The present study reports the obtaining of the transformed hairy roots, the bioguided isolation of the new molecule 3, and its structure characterization.
A histological analysis was performed with the aim of elucidating the spontaneous regeneration process of the hairy root lines LRT 2.3 and LRT 6.4, derived from Lopezia racemosa leaf explants and genetically transformed with the Agrobacterium rhizogenes strain ATCC15834/pTDT. The analysis showed both lines regenerate via indirect somatic embryogenesis; LRT 6.4 also regenerated by direct organogenesis. The morphogenic characteristics of the regenerated plantlets from both lines showed the typical characteristics, described previously, including a higher number of axillary shoot formation, short internodes, and plagiotropic roots compared with wild-type seedlings. The regeneration process occurred without the addition of plant growth regulators and was linked to the sucrose concentration in the culture medium. Reducing the sucrose concentration from 3% to 2%, 1%, and 0.5% increased the regeneration rate in LRT 6.4; the effect was less pronounced in LRT 2.3. The cytotoxic activity of different organic extracts obtained from roots and shoots were evaluated in the cancer cell lines HeLa (cervical carcinoma), HCT-15 (colon adenocarcinoma), and OVCAR (ovary carcinoma). The hexane and dichloromethane extracts from roots of both lines showed cytotoxic activity against the HeLa cell line. Only the dichloromethane extract from the roots of PLRT 2.3 showed cytotoxic activity against the OVCAR cell line. None of the methanol extracts showed cytotoxic activity, nor the shoot extracts from any solvent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.