Nanotechnology, or systems/devices manufactured at the molecular level, is a multidisciplinary scientific field undergoing explosive development. A part of this field is the development of nanoscaled drug delivery devices. Nanoparticles have been developed as an important strategy to deliver conventional drugs, recombinant proteins, vaccines and more recently nucleotides. Nanoparticles and other colloidal drug delivery systems modify the kinetics, body distribution and drug release of an associated drug. Other effects are tissue or cell specific targeting of drugs and the reduction of unwanted side effects by a controlled release. Therefore nanoparticles in the pharmaceutical biotechnology sector improve the therapeutic index and provide solutions for future delivery problems for new classes of so called biotech drugs including recombinant proteins and oligonucleotides. This review discusses nanoparticular drug carrier systems with the exception of liposomes used today, and what the potential and limitations of nanoparticles in the field of pharmaceutical biotechnology are.
The poorly soluble drug buparvaquone is proposed as an alternative treatment of Pneumocystis carinii pneumonia (PCP) lung infections. Physically stable nanosuspensions were formulated in order to deliver the drug at the site of infection using nebulization. The aerosolization characteristics of two buparvaquone nanosuspensions were determined with commercial jet and ultrasonic nebulizer devices. Aerosol droplet size distribution was determined with laser diffractometry (LD). Nebulization of the nanosuspensions and dispersion media surfactant solutions produced aerosol droplets diameters in the range from 3 to 5 microm for Respi-jet Kendall, Pari Turbo Boy system and Multisonic nebulizers and particles around 9-10 microm with Omron U1. Fractions of the nanosuspensions from the nebulizer reservoir and of aerosol produced were collected to investigate changes in the size of the drug nanocrystals influenced by the nebulization technology. Comparisons were performed measuring the drug nanocrystals with photon correlation spectroscopy (PCS) and LD of the samples. Drug particle aggregates were detected in the fractions of aerosol collected from jet nebulizers. Nebulizer technology (jet vs. ultrasonic) showed influence on the stability of the drug particle size distribution of buparvaquone nanocrystals during the nebulization time evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.