Mexico City children are chronically exposed to significant concentrations of air pollutants and exhibit chronic respiratory-tract inflammation. Epidemiological, controlled human exposures, laboratory-based animal models, and in vitro/in vivo studies have shown that inflammatory, endothelial dysfunction, and endothelial damage mediators are upregulated upon exposure to particulate matter (PM). Endothelial dysfunction is a critical event in cardiovascular disease.
All organisms have the ability to respond and adapt to a myriad of environmental insults. The human respiratory epithelium, when exposed to oxidant gases in photochemical smog, is at risk of DNA damage and requires efficient cellular adaptative responses to resist the environmentally induced cell damage. Ozone and its reaction products induce in vitro and in vivo DNA single strand breaks (SSBs) in respiratory epithelial cells and alveolar macrophages. To determine if exposure to a polluted atmosphere with ozone as the main criteria pollutant induces SSBs in nasal epithelium, we studied 139 volunteers, including a control population of 19 children and 13 adult males who lived in a low-polluted Pacific port, 69 males and 16 children who were permanent residents of Southwest Metropolitan Mexico City (SWMMC), and 22 young males newly arrived to SWMMC and followed for 12 weeks. Respiratory symptoms, nasal cytology and histopathology, cell viabilities, and single-cell gel electrophoresis were investigated. Atmospheric pollutant data were obtained from a fixed-site monitoring station. SWMMC volunteers spent >7 hr/day outdoors and all had upper respiratory symptoms. A significant difference in the numbers of DNA-damaged nasal cells was observed between control and chronically exposed subjects, both in children (p<0.00001) and in adults (p<0.01). SSBs in newly arrived subjects quickly increased upon arrival to the city, from 39.8 +/- 8.34% in the first week to 67.29 +/- 2.35 by week 2. Thereafter, the number of cells with SSBs remained stable in spite of the continuous increase in cumulative ozone, suggesting a threshold for cumulative DNA nasal damage. Exposure to a polluted urban atmosphere induces SSBs in human nasal respiratory epithelium, and nasal SSBs could serve as a biomarker of ozone exposure. Further, because DNA strand breaks are a threat to cell viability and genome integrity and appear to be a critical lesion responsible for p53 induction, nasal SSBs should be evaluated in ozone-exposed individuals.ImagesFigure 1.Figure 2.Figure 3.Figure 4. AFigure 4. BFigure 4. CFigure 4. DFigure 4. EFigure 5. AFigure 5. BFigure 5. CFigure 5. D
The objective of the study is to determine the damage by oxidative stress induced by morphine in brain of rats fed with a protein-deficient diet. Twenty-eight malnourished male Wistar rats, 30 days old, were used in the study. The animals were divided into four groups of 7 rats per group. Group I received NaCl and the groups II; III and IV intraperitoneally received 3, 6 and 12 mg/kg of morphine sulphate, respectively, in a single dose. Animals were sacrificed and the levels of glutathione (GSH), dopamine, tryptophan and 5-hydroxyindole-3-acetic acid (5-HIAA) as well as, Na+/K+ ATPase and total ATPase activity in the brain were measured. Tryptophan levels and Na+/K + ATPase activity showed non-significant changes in the experimental group. Levels of 5-HIAA decreased significantly (p = .03) in animals that received 12 mg/kg of morphine and in animals that received 3 mg/kg, levels of GSH and dopamine were found to have a significant decrease (p < .05), but a significant increase in the group that received 12 mg/kg of morphine (p < .05). Total ATPase activity increased significantly in the groups that received 3 mg/kg (p = .015) and 6 mg/kg (p = .0001) of morphine. The results show that malnutrition induces changes in cellular regulation and biochemical responses to oxidative stress caused by morphine sulphate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.