Several new fluorescence malaria in vitro drug susceptibility microtiter plate assays that detect the presence of malarial DNA in infected erythrocytes have recently been reported, in contrast to traditional isotopic screens that involve radioactive substrate incorporation to measure in vitro malaria growth inhibition. We have assessed and further characterized the malaria SYBR Green I-based fluorescence (MSF) assay for its ability to monitor drug resistance. In order to use the MSF assay as a drug screen, all assay conditions must be thoroughly examined. In this study we expanded upon the capabilities of this assay by including antibiotics and antifolates in the drug panel and testing folic acid-free growth conditions. To do this, we evaluated a more expansive panel of antimalarials in combination with various drug assay culture conditions commonly used in drug sensitivity screening for their activity against Plasmodium falciparum strains D6 and W2. The detection and quantitation limits of the MSF assay were 0.04 to 0.08% and ϳ0.5% parasitemia, respectively. The MSF assay quality was significantly robust, displaying a Z range of 0.73 to 0.95. The 50% inhibitory concentrations for each drug and culture condition combination were determined by using the MSF assay. Compared to the standard [ 3 H]hypoxanthine assay, the MSF assay displayed the expected parasite drug resistance patterns with a high degree of global and phenotypic correlation (r 2 > 0.9238), regardless of which culture condition combination was used. In conclusion, the MSF assay allows for reliable one-plate high-throughput, automated malaria in vitro susceptibility testing without the expense, time consumption, and hazard of other screening assays.
Background: There is a low incidence of malaria in Iquitos, Peru, suburbs detected by passive case-detection. This low incidence might be attributable to infections clustered in some households/regions and/or undetected asymptomatic infections.
Human African trypanosomiasis (HAT) is a neglected tropical disease caused by the protozoan parasite Trypanosoma brucei. Since drugs in use against HAT are toxic and require intravenous dosing, new drugs are needed. Initiating lead discovery campaigns by using chemical scaffolds from drugs approved for other indications can speed up drug discovery for neglected diseases. We demonstrated recently that the 4-anilinoquinazolines lapatinib (GW572016, 1) and canertinib (CI-1033) kill T. brucei with low micromolar EC50 values. We now report promising activity of analogs of 1, which provided an excellent starting point for optimization of the chemotype. We report our compound optimization that has led to synthesis of several potent 4-anilinoquinazolines, including NEU621, 23a, a highly potent, orally bioavailable inhibitor of trypanosome replication. At the cellular level, 23a blocks duplication of the kinetoplast and arrests cytokinesis, making it a new tool for studying regulation of the trypanosome cell cycle.
Abstract. The principal agent of mucocutaneous leishmaniasis (MCL) is the South American protozoan parasite Leishmania (Viannia) braziliensis. This organism is generally considered to be clonal, that is, it does not to undergo genetic exchange. Nevertheless, apparent hybrids between several Leishmania species have been reported in the New World and the Old World. When we characterized isolates of Leishmania (Viannia) from a single focus of cutaneous leishmaniasis (CL) and MCL, we found a remarkable phenotypic and genotypic diversity, with 12 zymodemes and 20 microsatellite genotypes. Furthermore, 26 of the 59 isolates were L. braziliensis/L. peruviana phenotypic hybrids that displayed 7 different microsatellite genotypes. A hybrid genotype was the only organism isolated from 4 patients with MCL. Thus hybrids must be included among the potential agents of MCL. Despite the propensity for clonality, hybrids are also an important feature of Leishmania (Viannia) and may give rise to epidemiologically important emergent genotypes.
BackgroundTafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class.MethodsIn the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ.ResultsNPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100.ConclusionsThe results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.