To improve the analysis of pesticides in complex food matrices with economic importance, alternative chromatographic techniques, such as supercritical fluid chromatography, can be used. Supercritical fluid chromatography has barely been applied for pesticide analysis in food matrices. In this paper, an analytical method using supercritical fluid chromatography coupled to a photodiode array detection has been established for the first time for the quantification of pesticides in papaya and avocado. The extraction of methyl parathion, atrazine, ametryn, carbofuran, and carbaryl was performed through the quick, easy, cheap, effective, rugged, and safe methodology. The method was validated using papaya and avocado samples. For papaya, the correlation coefficient values were higher than 0.99; limits of detection and quantification ranged from 130-380 and 220-640 μg/kg, respectively; recovery values ranged from 72.8-94.6%; precision was lower than 3%. For avocado, limit of detection values were ˂450 μg/kg; precision was lower than 11%; recoveries ranged from 50.0-94.2%. Method feasibility was tested for lime, banana, mango, and melon samples. Our results demonstrate that the proposed method is applicable to methyl parathion, atrazine, ametryn, and carbaryl, toxics pesticides used worldwide. The methodology presented in this work could be applicable to other fruits.
In this paper a method of using the "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) extraction and gas chromatography coupled to mass spectrometry detection (GC-MS) was developed for the analysis of five frequently applied pesticides in papaya and avocado. The selected pesticides, ametryn, atrazine, carbaryl, carbofuran, and methyl parathion, represent the most commonly used classes (carbamates, organophosphorous, and triazines). Optimum separation achieved the analysis of all pesticides in < 6.5 minutes. Validation using papaya and avocado samples established the proposed method as linear, accurate, and precise. In this sense, the correlation coefficients were > 0.99. The limits of detection (LOD) and quantification (LOQ) in papaya ranged from 0.03 mg/kg to 0.35 mg/kg and from 0.06 mg/kg to 0.75 mg/kg, respectively. Meanwhile for avocado, LOD values varied from 0.14 mg/kg to 0.28 mg/kg and LOQ values ranged from 0.22 mg/kg to 0.40 mg/kg. Recoveries obtained for each pesticide in both matrices ranged between 60.6% and 104.3%. The expanded uncertainty of the method was < 26% for all the pesticides in both fruits. Finally, the method was applied to other fruits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.