The activities of choline acetyltransferase and ATP-citrate lyase were significantly correlated (r = 0.995) in fractions of small and large synaptosomes isolated from rat hippocampus and cerebellum. The activities of these two enzymes did not correlate with those of pyruvate dehydrogenase, carnitine acetyltransferase, citrate synthase, acetyl-CoA synthetase, lactate dehydrogenase, or with the rate of high-affinity glutamate uptake in the synaptosomal fractions. The results provide additional evidence linking ATP-citrate lyase to the cholinergic system in the brain.
The influence of ranitidine on the pharmacokinetics and toxicity of doxorubicin was studied in six female New Zealand white rabbits. Plasma pharmacokinetic data were first obtained from rabbits given 3 mg/kg doxorubicin. After 1 month, the same rabbits were treated with ranitidine, 2.5 mg/kg or 25 mg/kg, before and during doxorubicin administration. The plasma doxorubicin assays to determine pharmacokinetic parameters were repeated. Drug toxicity was evaluated using complete blood counts, and hepatic function was measured using a 14C-aminopyrine breath test. High-dose ranitidine increased the total exposure to doxorubicin (area under the curve of doxorubicin alone = 1.44 +/- 0.88 microM.h/ml vs 4.49 +/- 2.35 microM.hr/ml for doxorubicin given with high-dose ranitidine; P = 0.06). Low-dose ranitidine did not alter doxorubicin pharmacokinetics. Exposure to doxorubicinol was altered by either high-dose or low-dose ranitidine. 14C-Aminopyrine half-life was altered by a ranitidine dose of 25 mg/kg (aminopyrine half-life after placebo control = 97 +/- 6 min as against aminopyrine half-life after ranitidine = 121 +/- 7 min; mean +/- SEM; P less than 0.02). Low-dose ranitidine did not exacerbate doxorubicin-induced myelosuppression. High-dose ranitidine enhanced doxorubicin-induced erythroid suppression while sparing the myeloid series. At cytochrome P-450-inhibitory doses, ranitidine's effects upon doxorubicin plasma pharmacokinetics are similar to those previously seen with cimetidine. These changes did not appear to alter drug detoxification and are not related to microsomal inhibition of doxorubicin detoxification. Low doses of ranitidine do not alter doxorubicin plasma pharmacokinetics or toxicity in rabbits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.