Certain drugs that interfere with folate metabolism (sulfones, sulfonamides, and inhibitors of dihydrofolate reductase) play an important role in the chemotherapy and prophylaxis of malaria. The activities and mechanisms of action of these drugs are regarded as similar in most respects to their activities against procaryotic microorganisms. Believed incapable of utilizing intact exogenous folates, plasmodia have been regarded as dependent on de novo synthesis of required folate cofactors. The present investigation, conducted in pursuit of a method for testing the in vitro susceptibility of Plasmodium falciparum to antifol antimalarial drugs, produced evidence that earlier assumptions about the folate metabolism of this organism are not correct. Three of four isolates of P. falciparum were successfully maintained in a culture medium depleted of folic acid and p-aminobenzoic acid. The antimalarial activities of sulfonamides and dihydrofolate reductase inhibitors were, furthermore, variably antagonized by the presence of folic acid and p-aminobenzoic acid in the culture medium. Optimum conditions for assessment of antifol antimalarial activity in vitro therefore require precise control of these factors in the culture medium. Our results suggest that resistance to antifol antimalarial drugs involves a complex of factors related to both the de novo synthesis of active folate cofactors and the ability to utilize exogenous intact folates in various forms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.