We provide evidence that FLIP is not simply an inhibitor of death-receptor-induced apoptosis but that it also mediates the activation of NF-kappaB and Erk by virtue of its capacity to recruit adaptor proteins involved in these signaling pathways.
Understanding distinct gene expression patterns of normal adult and developing fetal human pancreatic α- and β-cells is crucial for developing stem cell therapies, islet regeneration strategies, and therapies designed to increase β-cell function in patients with diabetes (type 1 or 2). Toward that end, we have developed methods to highly purify α-, β-, and δ-cells from human fetal and adult pancreata by intracellular staining for the cell-specific hormone content, sorting the subpopulations by flow cytometry, and, using next-generation RNA sequencing, we report the detailed transcriptomes of fetal and adult α- and β-cells. We observed that human islet composition was not influenced by age, sex, or BMI, and transcripts for inflammatory gene products were noted in fetal β-cells. In addition, within highly purified adult glucagon-expressing α-cells, we observed surprisingly high insulin mRNA expression, but not insulin protein expression. This transcriptome analysis from highly purified islet α- and β-cell subsets from fetal and adult pancreata offers clear implications for strategies that seek to increase insulin expression in type 1 and type 2 diabetes.
Triggering of Fas (CD95) by its ligand (FasL) rapidly induces cell death via recruitment of the adaptor protein Fas-associated death domain (FADD), resulting in activation of a caspase cascade. It was thus surprising that T lymphocytes deficient in FADD were reported recently to be not only resistant to FasL-mediated apoptosis, but also defective in their proliferative capacity. This finding suggested potentially dual roles of cell growth and death for Fas and possibly other death receptors. We report here that CD3-induced proliferation and interleukin 2 production by human T cells are blocked by inhibitors of caspase activity. This is paralleled by rapid cleavage of caspase-8 after CD3 stimulation, but no detectable processing of caspase-3 during the same interval. The caspase contribution to T cell activation may occur via TCR-mediated upregulation of FasL, as Fas-Fc blocked T cell proliferation, whereas soluble FasL augmented CD3-induced proliferation. These findings extend the role of death receptors to the promotion of T cell growth in a caspase-dependent manner.
Targeted gene disruption studies have established that the c-Jun NH2-terminal kinase (JNK) signaling pathway is required for stress-induced release of mitochondrial cytochrome c and apoptosis. Here we demonstrate that activated JNK is sufficient to induce rapid cytochrome c release and apoptosis. However, activated JNK fails to cause death in cells deficient of members of the Bax subfamily of proapoptotic Bcl2-related proteins. Furthermore, exposure to stress fails to activate Bax, cause cytochrome c release, and induce death in JNK-deficient cells. These data demonstrate that proapoptotic members of the Bax protein subfamily are essential for JNK-dependent apoptosis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.