In this study, the problem of two-dimensional forced convection MHD flow and heat transfer of ferrofluids over a moving flat plate with the influence of uniform heat flux and secondorder slip effects is considered. By applying the similarity transformation, the governing equations are reconstructed into the similarity equations and the resulting equations are solved via shooting technique. Then, we implement a stability analysis in order to verify which solutions are stable and physically realizable. The effects of the magnetic parameter, moving parameter, mass transfer parameter, first-order surface slip parameter, second-order surface slip parameter and volume fraction of solid ferroparticles on the dimensionless velocity, temperature, skin friction and Nusselt numbers are discussed in the form of tabular and graphical presentation. For this present study, we consider the results based on three preferred ferroparticles, namely magnetite, cobalt ferrite and Mn-Zn ferrite in water-and kerosene-based fluids. The results display the existence of dual solutions for a plate moving towards the origin in which the first solution is stable and physically realizable, while the second solution is not. Moreover, it is demonstrated that the magnetic, moving, mass transfer and slip effects together with the volume fraction of ferrofluids delay the boundary layer separation.
Rice straw is commonly burned openly after harvesting in Malaysia and many other Asian countries where rice is the main crop. This operation emits a significant amount of air pollution, which can have severe consequences for indoor air quality, public health, and climate change. Therefore, this study focuses on determining the compositions of trace elements and the morphological properties of fine particles. Furthermore, the species of bacteria found in bioaerosol from rice burning activities were discovered in this study. For morphological observation of fine particles, FESEM-EDX was used in this study. Two main categories of particles were found, which were natural particles and anthropogenic particles. The zinc element was found during the morphological observation and was assumed to come from the fertilizer used by the farmers. ICP-OES identifies the concentration of trace elements in the fine particle samples. A cultured method was used in this study by using nutrient agar. From this study, several bacteria were identified: Exiguobavterium indicum, Bacillus amyloliquefaciens, Desulfonema limicola str. Jadabusan, Exiguobacterium acetylicum, Lysinibacillus macrolides, and Bacillus proteolyticus. This study is important, especially for human health, and further research on the biological composition of aerosols should be conducted to understand the effect of microorganisms on human health.
In this research, the problem of magnetohydrodynamic flow and heat transfer over an exponentially stretching/shrinking sheet in ferrofluids is presented. The governing partial differential equations are transformed into nonlinear ordinary differential equations by applying suitable similarity transformations. These equations are then solved numerically using the shooting method for some pertinent parameters. For this research, the water-based ferrofluid is considered with three types of ferroparticles: magnetite, cobalt ferrite, and manganese-zinc ferrite. The numerical solutions on the skin friction coefficient, Nusselt number, velocity and temperature profiles influenced by the magnetic parameter, wall mass transfer parameter, stretching/shrinking parameter, and volume fraction of solid ferroparticle are graphically displayed and discussed in more details. The existences of dual solutions are noticeable for the stretching/shrinking case in a specific range of limit. For the first solution, an increasing number in magnetic and suction will also give an increment of skin friction coefficient and Nusselt number over stretching/shrinking sheet. For the skin friction coefficient only, it is showed a decreasing pattern after the intersection. Besides, the presence of ferroparticles in the fluids causes a high number of the fluid’s thermal conductivity and heat transfer rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.