We have characterized fractionated magnetic nanoparticles (MNPs) for magnetic particle imaging. Original Ferucarbotran particles were magnetically divided into three fractionated MNPs called MS1, MS2, and MS3. Harmonic spectra from the three fractionated MNPs were measured at excitation fields of 2.8 and 28 mT with a frequency of 10 kHz. MS1 showed a 2.5-fold increase in the harmonic spectrum over that of the original MNPs. To understand the origin of the enhancement in the harmonic spectrum from MS1, we explored the magnetic properties of the MS series, such as distributions of effective core size and anisotropy energy barrier, and the correlation between them. Using these results, we performed numerical simulations of the harmonic spectra based on the Langevin equation. The simulation results quantitatively explained the experimental results of the fractionated MS series. It was also clarified that MS1 includes a large portion of the MNPs that are responsible for the harmonic spectrum. V C 2013 AIP Publishing LLC.
The agricultural and food processing industries generate a significant portion of residues, refuse and waste. Conversion of these wastes into useful end product would be beneficial not only to the economy but also the environment as it reducing the solid waste disposal problem. The present study was aimed to investigate the performance of cassava peel starch (CPS) extracted from cassava peel waste in combination with alum to act as dual coagulant for turbidity removal in raw water from Sembrong dam. Comparative studies by employing both alum and CPS as primary coagulant using several series of Jar test were also conducted. Results showed that the usage of alum-CPS as dual coagulant not only enhanced the turbidity removal with maximum achievement up to 91.47%, but also significantly improve the coagulation process by reducing both alum dosage and settling time up to 50% which indicates broad prospects to be further developed as emerging green coagulant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.