A multiplex assay has been developed with newly designed primer sets comprising high mutation rate 12 RM Y-STR markers (DYS570, DYF399S1, DYS547, DYS612, DYF387S1, DYS449, DYS576, DYS5626, DYF403S1 (a + b), DYS627, DYS526, and DYF404S1). Rapidly mutating Y-STRs were evaluated in 167 male individuals among 97 were unrelated from Araein ethnic group and 70 belonged to shared paternal lineage including 20 pairs of father-son and 15 pairs of brother-brother relationship collected from Punjabi population of Pakistan. Forensic competency parameters were implemented for each marker and exceptionally significant results found wherein polymorphism information content (PIC) was in range of 0.7494 (DYS576) to 0.8994 (DYS627). Samples were also analyzed with Y-filer kit for comparison and marked differentiations observed. Haplotype discrimination capacity was 100% as no haplotype shared among all the unrelated individuals of same ethnic group as compared to 17 Y-filer loci (78%). While in closely related males, discrimination capacity was 96.4% with haplotype diversity value of 0.98. Resulted high mutation rate 1 × 10 to 7.14 × 10 as compared to Y-filer (1 × 10 to 1 × 10) manifested the power of RM Y-STRs for considering absolute individualization of interrelated and unrelated male individuals. However, multiplex assay would be useful for male discrimination in mixed DNA specimen, azoospermic males, and multiple male DNA contributors in sexual assault cases and mass disasters victim's identification as well as anthropological studies.
After wreaking havoc on a global level with a total of 5,488,825 confirmed cases and 349,095 deaths as of May 2020, severe acute respiratory syndrome coronavirus 2 is truly living up to the expectations of a 21st-century pandemic. Since the major cause of mortality is a respiratory failure from acute respiratory distress syndrome, the only present-day management option is supportive as the transmission relies solely on human-to-human contact. Patients suffering from coronavirus disease 2019 (COVID-19) should be tested for hyper inflammation to screen those for whom immunosuppression can increases chances of survival. As more and more clinical data surfaces, it suggests patients with mild or severe cytokine storms are at greater risk of failing fatally and hence these cytokine storms should be targets for treatment in salvaging COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.