Wireless communication systems have evolved and offered more smart and advanced systems like ad hoc and sensor-based infrastructure fewer networks. These networks are evaluated with two fundamental parameters including data rate and spectral efficiency. To achieve a high data rate and robust wireless communication, the most significant task is channel equalization at the receiver side. The transmitted data symbols when passing through the wireless channel suffer from various types of impairments, such as fading, Doppler shifts, and Intersymbol Interference (ISI), and degraded the overall network performance. To mitigate channel-related impairments, many channel equalization algorithms have been proposed for communication systems. The channel equalization problem can also be solved as a classification problem by using Machine Learning (ML) methods. In this paper, channel equalization is performed by using ML techniques in terms of Bit Error Rate (BER) analysis and comparison. Radial Basis Functions (RBFs), Multilayer Perceptron (MLP), Support Vector Machines (SVM), Functional Link Artificial Neural Network (FLANN), Long-Short Term Memory (LSTM), and Polynomial-based Neural Networks (NNs) are adopted for channel equalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.