Purpose The purpose of this paper is to validate a fuzzy risk graph model through a case study results carried out on a safety instrumented system (SIS). Design/methodology/approach The proposed model is based on an inference fuzzy system and deals with uncertainty data used as inputs of the conventional risk graph method. The coherence and redundancy of the developed fuzzy rules base are first verified in the case study. A new fuzzy model is suggested for a multi-criteria characterization of the avoidance possibility parameter. The fuzzy safety integrity level (SIL) is determined for two potential accident scenarios. Findings The applicability of the proposed fuzzy model on SIS shows the importance and pertinence of the proposed fuzzy model as decision-making tools in preventing industrial hazards while taking into consideration uncertain aspects of the data used on the conventional risk graph method. The obtained results show that the use of continuous fuzzy scales solves the problem of interpreting results and provides a more flexible structure to combine risk graph parameters. Therefore, a decision is taken on the basis of precise integrity level values and protective actions in the real world are suggested. Originality/value Fuzzy logic-based safety integrity assessment allows assessment of the SIL in a more realistic way by using the notion of the linguistic variable for representing information that is qualitative and imprecise and, therefore, ensures better decision making on risk prevention.
An important issue faced by risk analysts is how to deal with uncertainties associated with accident scenarios. In industry, one often uses single values derived fro m historical data or literature to estimate events probability or their frequency. However, both dynamic environments of systems and the need to consider rare component failures may make unrealistic this kind of data. In this paper, uncertainty encountered in Layers Of Protection Analysis (LOPA) is considered in the framework of possibility theory. Data provided by reliability databases and/or experts judgments are represented by fuzzy quantities (possibilit ies). The fu zzy outcome frequency is calculated by extended mu ltip licat ion using αcuts method. The fu zzy outcome is co mpared to a scenario risk tolerance criteria and the required reduction is obtained by resolving a possibilistic decision-making problem under necessity constraint. In order to validate the proposed model, a case study concerning the protection layers of an operational heater is carried out.
PurposeThe main objective of safety instrumented systems (SISs) is to maintain a safe condition of a facility if hazardous events occur. However, in some cases, SIS's can be activated prematurely, these activations are characterized in terms of frequency by a Spurious Trip Rate (STR) and their occurrence leads to significant technical, economic and even environmental losses. This work aims to propose an approach to optimize the performances of the SIS by a multi-objective genetic algorithm. The optimization of SIS performances is performed using the multi-objective genetic algorithm by minimizing their probability of failure on demand PFDavg, Spurious Trip Rate (STR) and Life Cycle Costs (LCCavg). A set of constraints related to maintenance costs have been established. These constraints imply specific maintenance strategies which improve the SIS performances and minimize the technical, economic and environmental risks related to spurious shutdowns. Validation of such an approach is applied to an Emergency Shutdown (ESD) of the blower section of an industrial facility (RGTE- In Amenas).Design/methodology/approachThe optimization of SIS performances is performed using the multi-objective genetic algorithm by minimizing their probability of failure on demand PFDavg, Spurious Trip Rate (STR) and Life Cycle Costs (LCCavg). A set of constraints related to maintenance costs have been established. These constraints imply specific maintenance strategies which improve the SIS performances and minimize the technical, economic and environmental risks related to spurious shutdowns. Validation of such an approach is applied to an Emergency Shutdown (ESD) of the blower section of an industrial facility (RGTE- In Amenas).FindingsA case study concerning a safety instrumented system implemented in the RGTE facility has shown the great applicability of the proposed approach and the results are encouraging. The results show that the selection of a good maintenance strategy allows a very significant minimization of the PFDavg, the frequency of spurious trips and Life Cycle Costs of SIS.Originality/valueThe maintenance strategy defined by the system designer can be modified and improved during the operational phase, in particular safety systems. It constitutes one of the least expensive investment strategies for improving SIS performances. It has allowed a considerable minimization of the SIS life cycle costs; PFDavg and the frequency of spurious trips.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.