There is broad interest to improve the reproducibility of published research. We developed a survey tool to assess the availability of digital research artifacts published alongside peer-reviewed journal articles (e.g. data, models, code, directions for use) and reproducibility of article results. We used the tool to assess 360 of the 1,989 articles published by six hydrology and water resources journals in 2017. Like studies from other fields, we reproduced results for only a small fraction of articles (1.6% of tested articles) using their available artifacts. We estimated, with 95% confidence, that results might be reproduced for only 0.6% to 6.8% of all 1,989 articles. Unlike prior studies, the survey tool identified key bottlenecks to making work more reproducible. Bottlenecks include: only some digital artifacts available (44% of articles), no directions (89%), or all artifacts available but results not reproducible (5%). The tool (or extensions) can help authors, journals, funders, and institutions to self-assess manuscripts, provide feedback to improve reproducibility, and recognize and reward reproducible articles as examples for others.
We present a new, open source, computationally capable datalogger for collecting and analyzing high temporal resolution residential water use data. Using this device, execution of water end use disaggregation algorithms or other data analytics can be performed directly on existing, analog residential water meters without disrupting their operation, effectively transforming existing water meters into smart, edge computing devices. Computation of water use summaries and classified water end use events directly on the meter minimizes data transmission requirements, reduces requirements for centralized data storage and processing, and reduces latency between data collection and generation of decision-relevant information. The datalogger couples an Arduino microcontroller board for data acquisition with a Raspberry Pi computer that serves as a computational resource. The computational node was developed and calibrated at the Utah Water Research Laboratory (UWRL) and was deployed for testing on the water meter for a single-family residential home in Providence City, UT, USA. Results from field deployments are presented to demonstrate the data collection accuracy, computational functionality, power requirements, communication capabilities, and applicability of the system. The computational node’s hardware design and software are open source, available for potential reuse, and can be adapted to specific research needs.
Most urban water-use monitoring, modeling, and conservation research has focused on a large but relatively homogenous group of residential water users. Commercial, industrial, and institutional (CII) facilities use large volumes of water, but their diversity in amounts, timing, locations, and other use factors makes them difficult to monitor and study. We monitored water use at four manufacturing and two assisted-care facilities in Logan, Utah, at 5-min and 5-s frequencies for up to 1 year. We used the data to disaggregate and quantify the temporal signature of end uses that included toilets, showers, landscape irrigation, industrial processes, and humidifiers. We also quantified variability in volume, duration, frequency, and timing of end uses, variability across facilities, and average water use per end use. Results identified water-use events both specific to CII users and in common with residential users. We shared findings with participating business representatives, who verified that results matched their understanding of water-use behaviors within their facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.