Bacterial drug resistance is a worrying public health problem. Antibiotic efflux is a major non-specific resistance mechanism used by bacteria, and efflux pumps are involved in the low-level susceptibility of various important Gram-negative pathogens. Use of molecules that can block bacterial pumps is an attractive strategy, but several studies report only partial efficacy owing to limits of these molecules (stability, selectivity, bioavailability, toxicity, etc.). The objective of this study was to search for natural sources of molecules able to inhibit efflux pump systems of resistant Gram-negative bacteria (Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Salmonella enterica serotype Typhimurium and Pseudomonas aeruginosa). The results indicate that the studied essential oils exhibit interesting activity against the tested bacteria. This activity was significantly enhanced in the presence of an efflux pump inhibitor such as phenylalanine arginyl β-naphthylamide (PAβN). The role of lipopolysaccharide (LPS) structure in the effect of essential oils was also reported in Salmonella LPS deep-rough mutants. In addition, essential oils of Thymus maroccanus and Thymus broussonetii, used at a low concentration (a fraction of the minimum inhibitory concentration), are able to significantly increase chloramphenicol susceptibility of several resistant isolates. These results demonstrate that these essential oils can alter efflux pump activity and may be attractive candidates to develop new drugs for chemosensitising multidrug-resistant strains to clinically used antibiotics.
In Morocco, the occurrence of toxic cyanobacteria blooms is confirmed in some water bodies used for recreational and/or as drinking water reservoirs. According to WHO recommendations, the establishment of a monitoring program for microcystins is a necessity. This paper presents toxicological studies of 19 toxic cyanobacteria strains of Microcystis, Synechocystis, Pseudanabaena, and Oscillatoria. These strains were isolated from various water bodies including natural lakes, reservoirs, and ponds located in central regions of Morocco. The isolation, culture, and biomass production of these strains was made on Z8 or BG13 media under laboratory controlled conditions. The hepatotoxicity of cyanobacterial lyophilized material was confirmed by mouse bioassays. The amount of microcystins produced by each strain was determined by the enzyme-linked immunosorbent assay (ELISA). The detection and identification of microcystin variants was performed by high performance liquid chromatography (HPLC) with photodiode array detection. Almost all strains showed medium to high toxicity, the estimated LD50 i.p. mice bioassay ranged between 28 to 350 mg/kg body weight. The concentrations of microcystins varied between 2.16 to 944 micrograms/g and 26.8 to 1884 micrograms/g dry weight determined by ELISA and HPLC, respectively. The screening of bloom-forming and microcystin producer cyanobacteria strains in these fresh water bodies leads us to propose the need for the establishment of a survey of cyanobacteria and a cyanotoxin-monitoring program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.