The human gut is one of the most complex ecosystems, composed of 1013-1014 microorganisms which play an important role in human health. In addition, some food products contain live bacteria which transit through our gastrointestinal tract and could exert beneficial effects on our health (known as probiotic effect). Among the numerous proposed health benefits attributed to commensal and probiotic bacteria, their capacity to interact with the host immune system is now well demonstrated. Currently, the use of recombinant lactic acid bacteria to deliver compounds of health interest is gaining importance as an extension of the probiotic concept. This review summarizes some of the recent findings and perspectives in the study of the crosstalk of both commensal and probiotic bacteria with the human host as well as the latest studies in recombinant commensal and probiotic bacteria. Our aim is to highlight the potential roles of recombinant bacteria in this ecosystem.
In this study, we developed a large-scale screening of bacterial strains in order to identify novel candidate probiotics with immunomodulatory properties. For this, 158 strains, including a majority of lactic acid bacteria (LAB), were screened by two different cellular models: tumor necrosis factor alpha (TNF-␣)-activated HT-29 cells and peripheral blood mononuclear cells (PBMCs). Different strains responsive to both models (pro-and anti-inflammatory strains) were selected, and their protective effects were tested in vivo in a murine model of influenza virus infection. Daily intragastric administrations during 10 days before and 10 days after viral challenge (100 PFU of influenza virus H1N1 strain A Puerto Rico/8/1934 [A/PR8/34]/mouse) of Lactobacillus plantarum CNRZ1997, one potentially proinflammatory probiotic strain, led to a significant improvement in mouse health by reducing weight loss, alleviating clinical symptoms, and inhibiting significantly virus proliferation in lungs. In conclusion, in this study, we have combined two cellular models to allow the screening of a large number of LAB for their immunomodulatory properties. Moreover, we identified a novel candidate probiotic strain, L. plantarum CNRZ1997, active against influenza virus infection in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.