Conventional chemotherapeutic approaches in cancer therapy such as surgery, chemotherapy, and radiotherapy have several disadvantages due to their nontargeted distributions in the whole body. On the other hand, nanoparticles (NPs) based therapies are remarkably progressing to solve several limitations of conventional drug delivery systems (DDSs) including nonspecific biodistribution and targeting, poor water solubility, weak bioavailability and biodegradability, low pharmacokinetic properties, and so forth. The enhanced permeability and retention effect escape from Pglycoprotein trap in cancer cells as a passive targeting mechanism, and active targeting strategies are also other most important advantages of NPs in cancer diagnosis and therapy. Folic acid (FA) is one of the biologic molecules which has been targeted overexpressed-folic acid receptor (FR) on the surface of cancer cells. Therefore, conjugation of FA to NPs most easily enhances the FR-mediated targeting delivery of therapeutic agents. Here, the recent works in FA which have been decorated NPs-based DDSs are discussed and cancer therapy potency of these NPs in clinical trials are presented.
K E Y W O R D Scancer diagnosis and therapy, folic acid, nanoparticles, nanotechnology, targeted drug delivery
In the current study, radiation dose-reduction factor (DRF) of nanoceria or cerium oxide nanoparticles (CONPs) in MRC-5 Human Lung Fibroblastic Cells and MCF-7 Breast-Cancer Cells was estimated. Characterization of CONPs was determined using scanner electron microscope (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and spectrophotometer. Then, six plans were designed with different radiation dose values on planning target value. The obtained MRC-5 and MCF-7 cells were treated with non-toxic concentrations of CONPs and then exposed. Finally, cell viability (%) of the cell lines was determined using MTT assay. The findings showed that CONPs have no significant radioprotective effect against 10 cGy radiation dose value. Nevertheless, 70 lM CONPs resulted in a significant radioprotection against 100, 200, 300, 400 and 500 cGy radiation dose values compared with the control group in MRC-5 cells. For all radiation dose values, mean cell viability (%) of MCF-7 had not increased significantly at the presence of nanoceria compared with control group. According to the findings, it was revealed that the use of CONPs have a significant radioprotective effect on normal lung cells, while they do not provide any protection for MCF-7 cancer cells. These properties can help to increase therapeutic ratio of radiotherapy.
In this review, we aim to clarify the molecular mechanisms of radioprotective effects of melatonin, as well as possible applications as a radiation countermeasure in accidental exposure or nuclear/radiological disasters.
Medical linear accelerators (linacs) are the most frequently applied radiation therapy machines in the locoregional treatment of cancers by producing either high-energy electron or photon beams. However, with high-energy photons (>8 MeV), interaction of these photons with different high-Z nuclei of materials in components of the linac head unavoidably generates neutrons. On the other hand, the average energy of these generated neutrons has almost the highest radiation-weighting factor. Therefore, the produced neutrons should not be neglected. There are various tools for the measurement of neutron dose/fluence generated in a megavoltage linac, including thermoluminescent dosimeters, solid-state nuclear track detectors, bubble detectors, activation foils, Bonner sphere systems, and ionization chamber pairs. In this review article, each of the above-mentioned dosimetric methods will be described in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.