Objectives: This study investigated the agreement at the categorical level between the Copan WASPLab incorporating the BioRad expert system against the SIRscan 2000 automatic for antimicrobial disc diffusion susceptibility testing. Methods: The 338 clinical strains (67 Pseudomonas aeruginosa, 19 methicillin-resistant Staphylococcus aureus, 75 methicillin-sensitive S. aureus and 177 Enterobacterales isolates) analysed in this study were non-duplicate isolates obtained from consecutive clinical samples referred to the clinical bacteriology laboratory at Geneva University Hospitals between June and August 2019. For the WASPLab the inoculum suspension was prepared in strict accordance with the manufacturer's instruction (Copan WASP srl, Brescia, Italy) by adding 2 mL of the 0.5 McFarland primary suspension used for the SIRscan analysis into a sterile tube filled with 4 mL of sterile saline (1:3 dilution). The inoculum (2 Â 30 mL loop/spreader) was spread over the entire surface of MuellereHinton agar plates according to the AST streaking pattern defined by Copan. The antibiotic discs were dispensed by the WASP and inoculated media were loaded on conveyors for transfer to the automatic incubators. The plates were incubated for 16 h, and several digital images were acquired. Inhibition zone diameters were automatically read by the WASPLab and were adjusted manually whenever necessary. For the SIRscan 2000 automatic, the antimicrobial disc diffusion susceptibility testing was performed according to the EUCAST guidelines. The gradient strip method was used to resolve discrepancies. Results: The overall categorical agreement between the compared methods reached 99.1% (797/804; 95% CI 98.2%e99.6%), 99.5% (1029/1034; 95% CI 98.9%e99.8%), and 98.8% (2798/2832; 95% CI 98.3%e99.1%) for P. aeruginosa, S. aureus and the Enterobacterales, respectively. Conclusions: WASPLab incorporating the BioRad expert system provides a fully automated solution for antimicrobial disc diffusion susceptibility testing with equal or better accuracy than other available phenotypic methods.
The objective of this study was to evaluate the accuracy and robustness of a fully automated EUCAST RAST (rapid antimicrobial susceptibility test) directly from positive blood culture and to appreciate its implementation constraints. This study was conducted in two phases: (i) spiked blood culture bottles (BCs) using 779 non-duplicate clinical isolates and (ii) a prospective clinical trial including 534 positive BCs sequentially processed in routine at the Bacteriology Laboratory of Geneva University Hospitals.
The accuracy of the Thermo Scientific™ Sensititre™ Anaerobe MIC plate was assessed against the ATB ANA® test (bioMérieux) on 56 clinically relevant anaerobic strains collected at Geneva University Hospitals. The overall categorical agreement between both methods reached 95%. The Sensititre™ Anaerobe MIC plate had excellent accuracy for most antibiotics tested. When the Sensititre™ Anaerobe MIC plate disagreed with ATB ANA® test, the gradient strip method resolved the antimicrobial susceptibility categories of all the antibiotics tested, except for piperacillin, piperacillin-tazobactam, and penicillin, in favor of the Sensititre™ Anaerobe MIC plate (58% [21 out of 36]). Several very major errors were observed for piperacillin (12.5% [7 out of 56]), piperacillin-tazobactam (12.5% [7 out of 56]), and penicillin (2% [1 out of 56]). The gradient strip method revealed that the categorical differences for piperacillin, piperacillin-tazobactam, and penicillin were at least partly explained by heterogeneity in resistance expression. The Sensititre™ Anaerobe MIC plate offers therefore a useful alternative to the ATB ANA® test for the routine antimicrobial susceptibility testing of anaerobes in clinical microbiology laboratories.
The objective of this study was to evaluate the performances of the automated digital imaging of Gram-stained slides against manual microscopy. Four hundred forty-three identified Gram-stained slides were included in this study. When both methods agreed, we considered the results as correct, and no further examination was carried out. Whenever the methods gave discrepant results, we reviewed the digital images and the glass slides by manual microscopy to avoid incorrectly read smears. The final result was a consensus of multiple independent reader interpretations. Among the 443 slides analyzed in this study, 101 (22.8%) showed discrepant results between the compared methods. The rates of discrepant results according to the specimen types were 5.7% (9/157) for positive blood cultures, 42% (60/142) for respiratory tract specimens, and 22% (32/144) for sterile site specimens. After a subsequent review of the discrepant slides, the final rate of discrepancies dropped to 7.0% (31/443). The overall agreement between the compared methods and the culture results reached 78% (345/443) and 79% (349/443) for manual microscopy and automated digital imaging, respectively. According to culture results, the specificity for automated digital imaging and manual microscopy were 90.8% and 87.7% respectively. In contrast, sensitivity was 84.1% for the two compared methods. The discrepant results were mostly encountered with microorganism morphologies of rare occurrence. The results reported in this study emphasize that on-screen reading is challenging, since the recognition of morphologies on-screen can appear different as compared to routine manual microscopy. Monitoring of Gram stain errors, which is facilitated by automated digital imaging, remains crucial for the quality control of reported Gram stain results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.