<p class="Abstrak">Di beberapa daerah di Indonesia, malaria masih merupakan salah satu penyakit endemik dan termasuk ke dalam kategori penyakit menular dengan vektor nyamuk <em>Anopheles</em>. Penurunan jumlah mortalitas penderita malaria ini telah menjadi program Pemerintah Indonesia dan <em>World Health Organization</em>. Salah satu hal penting yang dapat dilakukan adalah menyediakan alat diagnosis malaria yang cepat dan akurat berbantukan komputer. Oleh karena itu, pada studi ini dikembangkan sebuah metode deteksi malaria berbasis segmentasi warna citra yang dikombinasikan dengan metode pencacahan objek citra dan pembelajaran mesin berbasis <em>Convolutional Neural Network</em>. Pada studi ini, segmentasi citra dilakukan dengan menetapkan suatu nilai ambas batas tertentu (<em>thresholding</em>) pada model warna HSV. Nilai ambang batas untuk masing-masing kanal warna ditetapkan sebagai berikut: H = 100-175, S = 100-250, dan V = 60-190. Terdapat tiga skema pembelajaran mesin yang digunakan, yaitu citra asli menggunakan <em>RMSProp</em> <em>optimizer</em>, citra tersegmentasi menggunakan <em>RMSProp</em> dan <em>Adam</em> <em>optimizer</em>. Akurasi pelatihan dan validasi CNN tertinggi diperoleh dengan skema citra tersegmentasi menggunakan <em>RMSProp</em> <em>optimizer</em>, yaitu sebesar 92,77% dan 94,38%. Sementara, deteksi malaria berbasis pencacahan objek memiliki akurasi sebesar 93,78%. Meskipun deteksi malaria berbasis pencacahan objek memiliki akurasi 93,78%, tetapi sumber daya komputasi dan waktu yang diperlukan jauh lebih rendah.</p><p class="Abstrak"><strong><em>Abstract</em></strong></p><p class="Abstrak"><em>Malaria is still one of the endemic diseases in several regions of Indonesia. Reducing the malaria mortality rate has become a notable programme, not only does the Government of the Republic of Indonesia project it, but also the World Health Organization has a similar plan to tackle this disease. One of the prominent concerns to properly promote this programme is providing a rapid and accurate malaria diagnosis tool by applying the computer-aided diagnostics to minimize human errors. The aim of this study is to develop a colour microscopic image-based malaria detection using object counting and CNN-based machine learning. In this research, the HSV colour model with threshold values of H: 100-175, S: 100-250, and V: 60-190 was used to remove the image background. There are three machine learning schemes implemented in this study, i.e. original image using RMSProp optimizer, segmented image using RMSProp and Adam optimizer. The highest training and validation accuracy of CNN were obtained using a segmented image scheme by the RMSProp optimizer, 0.9277 and 0.9438. On the contrary, object-based malaria detection has an accuracy of 93.78%. Furthermore, there are several considerations to determine the malaria detection method, i.e. accuracy, computational resources, and time. Even though malaria detection using object counting has an accuracy of 93.78%, lower than the accuracy of CNN validation, the computational resources and time required are much lower and faster. Therefore, this detection method is suitable for smartphone-based devices with low-middle end specifications.</em></p>
The development of computer vision has expanded widely as there is a vast number of its applications in various aspects of daily life. One of its implementations is integrating the image processing technique on a prototype coffee machine based on the speech recognition system. This study aims to detect the requested coffee colour spoken by users which are black, middle and light. The sensor used in this research is a digital PC camera and the applied method is Multilevel Colour Thresholding. Of all experiments conducted, the image processing technique can work perfectly as the camera is able to identify the requested colour of the coffee solution. Furthermore, the system might be developed by improving the multilevel colour thresholding technique as well as advancing the hardware design in order to establish more robust coffee machine based on the requested colour.
Sleep Apnea merupakan kelainan ketika tidur yang memiliki berbagai dampak berbahaya bagi kesehatan serta dapat mengancam keselamatan seperti serangan jantung, stroke, diabetes, gagal ginjal, hipertensi dan sebagainya. Diagnosa sleep apnea menjadi tantangan di dunia medis, selain karena biaya peralatan yang mahal, keterbatasan alat yang ada, diagnosanya cukup rumit untuk dilakukan secara personal oleh masyarakat awam di rumah masing-masing. Dengan menggunakan mikrofon yang terdapat pada Arduino Nano, dirancanglah suatu sistem pengukuran laju pernapasan sebagai bagian kecil dari sistem diagnosa sleep apnea menggunakan polisomnografi. Pada sistem ini, sistem penapisan berlapis diimplementasikan untuk mengeliminasi derau akibat lingkungan sekitar tempat observasi. Purwarupa ini diuji dengan membandingkan nilai luarannya dengan perhitungan laju pernapasan secara manual. Berdasarkan pengukuran yang dilakukan, hasil akurasi yang dicapai bernilai diatas 93%, yang berarti purwarupa sistem cukup ideal untuk digunakan sebagai metode pengukuran laju pernapasan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.