Lipid bilayer membranes are ubiquitous in natural chemical conversions. They enable self-assembly and compartmentalization of reaction partners and it becomes increasingly evident that a thorough fundamental understanding of these concepts is highly desirable for chemical reactions and solar energy conversion with artificial systems. This minireview focusses on selected case studies from recent years, most of which were inspired by either membrane-facilitated light harvesting or respective charge transfer. The main focus is on highly biomimetic liposomes with artificial chromophores, and some cases for polymer-membranes will be made. Furthermore, we categorized these studies into energy transfer and electron transfer, with phospholipid vesicles, and polymer membranes for light-driven reactions.
Calculations of Förster
Resonance Energy Transfer (FRET)
often neglect the influence of different chromophore orientations
or changes in the spectral overlap. In this work, we present two computational
approaches to estimate the energy transfer rate between chromophores
embedded in lipid bilayer membranes. In the first approach, we assess
the transition dipole moments and the spectral overlap by means of
quantum chemical calculations in implicit solvation, and we investigate
the alignment and distance between the chromophores in classical molecular
dynamics simulations. In the second, all properties are evaluated
integrally with hybrid quantum mechanical/molecular mechanics (QM/MM)
calculations. Both approaches come with advantages and drawbacks,
and despite the fact that they do not agree quantitatively, they provide
complementary insights on the different factors that influence the
FRET rate. We hope that these models can be used as a basis to optimize
energy transfers in nonisotropic media.
We present a method of enabling photochemical reactions in water by using biomimetic, water-soluble liposomes and a specifically functionalized perylene diimide chromophore. Linking two flexible saturated C4-alkyl chains with terminal...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.