The most important step in any quantitative proteomic pipeline is feature detection (aka peak picking). However, generating quality hand-annotated data sets to validate the algorithms, especially for lower abundance peaks, is nearly impossible. An alternative for creating gold standard data is to simulate it with features closely mimicking real data. We present Mspire-Simulator, a free, open-source shotgun proteomic simulator that goes beyond previous simulation attempts by generating LC-MS features with realistic m/z and intensity variance along with other noise components. It also includes machine-learned models for retention time and peak intensity prediction and a genetic algorithm to custom fit model parameters for experimental data sets. We show that these methods are applicable to data from three different mass spectrometers, including two fundamentally different types, and show visually and analytically that simulated peaks are nearly indistinguishable from actual data. Researchers can use simulated data to rigorously test quantitation software, and proteomic researchers may benefit from overlaying simulated data on actual data sets.
BackgroundError correction is an important step in increasing the quality of next-generation sequencing data for downstream analysis and use. Polymorphic datasets are a challenge for many bioinformatic software packages that are designed for or assume homozygosity of an input dataset. This assumption ignores the true genomic composition of many organisms that are diploid or polyploid. In this survey, two different error correction packages, Quake and ECHO, are examined to see how they perform on next-generation sequence data from heterozygous genomes.ResultsQuake and ECHO perform well and were able to correct many errors found within the data. However, errors that occur at heterozygous positions had unique trends. Errors at these positions were sometimes corrected incorrectly, introducing errors into the dataset with the possibility of creating a chimeric read. Quake was much less likely to create chimeric reads. Quake's read trimming removed a large portion of the original data and often left reads with few heterozygous markers. ECHO resulted in more chimeric reads and introduced more errors than Quake but preserved heterozygous markers.Using real E. coli sequencing data and their assemblies after error correction, the assembly statistics improved. It was also found that segregating reads by haplotype can improve the quality of an assembly.ConclusionsThese findings suggest that Quake and ECHO both have strengths and weaknesses when applied to heterozygous data. With the increased interest in haplotype specific analysis, new tools that are designed to be haplotype-aware are necessary that do not have the weaknesses of Quake and ECHO.
BackgroundGenome assemblers to date have predominantly targeted haploid reference reconstruction from homozygous data. When applied to diploid genome assembly, these assemblers perform poorly, owing to the violation of assumptions during both the contigging and scaffolding phases. Effective tools to overcome these problems are in growing demand. Increasing parameter stringency during contigging is an effective solution to obtaining haplotype-specific contigs; however, effective algorithms for scaffolding such contigs are lacking.MethodsWe present a stand-alone scaffolding algorithm, ScaffoldScaffolder, designed specifically for scaffolding diploid genomes. The algorithm identifies homologous sequences as found in "bubble" structures in scaffold graphs. Machine learning classification is used to then classify sequences in partial bubbles as homologous or non-homologous sequences prior to reconstructing haplotype-specific scaffolds. We define four new metrics for assessing diploid scaffolding accuracy: contig sequencing depth, contig homogeneity, phase group homogeneity, and heterogeneity between phase groups.ResultsWe demonstrate the viability of using bubbles to identify heterozygous homologous contigs, which we term homolotigs. We show that machine learning classification trained on these homolotig pairs can be used effectively for identifying homologous sequences elsewhere in the data with high precision (assuming error-free reads).ConclusionMore work is required to comparatively analyze this approach on real data with various parameters and classifiers against other diploid genome assembly methods. However, the initial results of ScaffoldScaffolder supply validity to the idea of employing machine learning in the difficult task of diploid genome assembly. Software is available at http://bioresearch.byu.edu/scaffoldscaffolder.
Servo presses enable new types of forming motion profiles that can be used to stamp difficult materials, such as high strength steels. This paper presents an application of Bayesian statistics to intelligently select which motion profile maximizes the expected utility given the properties of the incoming material. Bayesian logistic regression was used in conjunction with expected utility to estimate manufacturing returns, which can be used to make informed process decisions. A use case is presented, which demonstrates that the Smart Forming Algorithm can increase expected returns by more than 20%.
In the context of genome assembly, the contig orientation problem is described as the problem of removing sufficient edges from the scaffold graph so that the remaining subgraph assigns a consistent orientation to all sequence nodes in the graph. This problem can also be phrased as a weighted MAX-CUT problem. The performance of MAX-CUT heuristics in this application is untested. We present a greedy heuristic solution to the contig orientation problem and compare its performance to a weighted MAX-CUT semi-definite programming heuristic solution on several graphs. We note that the contig orientation problem can be used to identify inverted repeats and inverted haplotypes, as these represent sequences whose orientation appears ambiguous in the conventional genome assembly framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.