Rice husk ash (RHA) obtained from agricultural waste, by using rice husk as a power source, is mainly composed of silica and carbon black. A two-stage conventional mixing procedure was used to incorporate rice husk ash into natural rubber. For comparison purposes, two commercial reinforcing fillers, silica and carbon black, were also used. The effect of these fillers on cure characteristics and mechanical properties of natural rubber materials at various loadings, ranging from 0 to 40 phr, was investigated. The results indicated that RHA filler resulted in lower Mooney viscosity and shorter cure time of the natural rubber materials. The incorporation of RHA into natural rubber improved hardness but decreased tensile strength and tear strength. Other properties, such as Young's modulus and abrasion loss, show no significant change. However, RHA is characterized by a better resilience property than that of silica and carbon black. Scanning electron micrographs revealed that the dispersion of RHA filler in the rubber matrix is discontinuous, which in turn generates a weak structure compared with that of carbon black and silica. Overall results indicate that RHA can be used as a cheaper filler for natural rubber materials where improved mechanical properties are not critical.
SYNOPSISThe reinforcement of a natural rubber compound by various surface-modified precipitated silicas was compared. Compound physical properties were determined for two silicas differing in surface area and were used as controls to evaluate these silicas after surface modification by using either a bifunctional organosilane coupling agent (y-mercaptopropyl-trimethoxysilane) or a new surface modification process. This new process is based on the in situ polymerization of organic monomers solubilized inside surfactant bilayers that are adsorbed onto the silica surface to afford silicas modified with styrene-butadiene and styrene-isoprene copolymers. Both surface modification processes afford materials that dramatically increase the compound cure rate, thereby significantly reducing Tw cure times, while also improving tensile properties, tear strength, abrasion resistance, and compression set of the cured compound. The silane-modified silica gives a higher flex-cracking resistance than do the silicas modified by the in situ polymerization of organic monomers, whereas these latter silicas significantly increase rebound resilience and offer greater overall improvements in rubber compound performance. The rubber compound physical properties obtained using the modified, higher surface area Hi-SiP 255 silica are generally improved relative to those obtained using the modified Hi-Silo 233 silica. 0 1996 John Wiley & Sons, Inc.
Epoxidized natural rubber (ENR) was prepared via in situ epoxidation from high ammonia concentrated natural rubber latex with formic acid and hydrogen peroxide in the presence of a surfactant at 50°C for 4, 8, and 12 h. The obtained ENRs containing 20, 45, and 65 mol % of expoxide groups were denoted ENR20, ENR45, and ENR65, respectively. The differential scanning calorimetric study revealed that they exhibited higher glass transition temperatures than that of natural rubber (Ϫ62.4°C), at Ϫ38.2°C for ENR20, Ϫ27.8°C for ENR45, and Ϫ19.7°C for ENR 65. It was clearly seen that their glass transition temperatures increased as the amount of epoxide groups increased. The prepared ENRs were compounded and vulcanized to prepare test specimens for determination of oil resistance and various physical properties. It was found that the swelling of ENRs in oils was substantially less than that of natural rubber. The oil resistance of ENR65 was comparable to that of nitrile rubber, commonly used as oil resistant rubber. ENR65 also showed higher hardness than other ENRs. Contrarily, ENR20 possessed superior tensile strength and compression set when compared with other ENRs.
Sol‐gel process of alkyltriethoxysilanes that was dispersed in natural rubber latex was used to generate alkylated silica particles inside the rubber matrix. Three types of alkyltriethoxysilanes were chosen, i.e., vinyltriethoxysilane (VTOS), ethyltriethoxysilane (ETOS), and i‐butyltriethoxysilane (BTOS), as they differed in the type of one substituent group. Together with tetraethoxysilane (TEOS), a typical precursor for silica formation, all silanes were studied for their conversion to silica and subsequent reinforcement capabilities in sulfur‐vulcanized rubber. The in situ generated silicas were fine and well dispersed in the rubber matrix, as analyzed by SEM and TEM. Solid‐state 29Si‐NMR technique was used to confirm the presence of alkyl substituents on the silica particles buried inside the rubber matrix. Tensile and tear properties of the in situ silica‐filled NR vulcanizates were higher than those of the vulcanizate prepared by conventional mixed method. Among the three alkyltriethoxysilanes used, only VTOS, when used as a mixture with TEOS, did not cause a reduction in silica formation. The resulting vinylated silica tended to enhance the tensile modulus and resistant to tear of the rubber vulcanizates. Cure characteristic and swelling behavior in toluene of the silica‐containing vulcanizates were also investigated. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers
SynopsisEpoxy/graphite fiber, polyimide/graphite fiber, and polysulfone/graphite fiber composites were exposed to 1.33 MeV y irradiation and 0.5 MeV electron bombardment for varying periods of time. The effects of the irradiation treatments on the breaking stress and Young's modulus were studied by a three point bending test. Effects were small; indeed, both electron radiation up to 5000 Mrad and y radiation up to 350 Mrad resulted in slight increases in both stress and modulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.