In this study, the relation among different meteorological variables and the electrical power from photovoltaic systems located at different selected places in Mexico were presented. The data was collected from on-site real-time measurements from Mexico City and the State of Sonora. The statistical estimation by the gradient descent method demonstrated that solar radiation, outdoor temperature, wind speed, and daylight hour influenced the electric power generation when it was compared with the real power of each photovoltaic system. According to our results, 97.63% of the estimation results matched the real data for Sonora and 99.66% the results matched for Mexico City, achieving overall errors less than 7% and 2%, respectively. The results showed an acceptable performance since a satisfactory estimation error was achieved for the estimation of photovoltaic power with a high determination coefficient R2.
In this manuscript, distinct approaches were used in order to obtain the best electrical power estimation from photovoltaic systems located at different selected places in Mexico. Multiple Linear Regression (MLR) and Gradient Descent Optimization (GDO) were applied as statistical methods and they were compared against an Adaptive Neuro-Fuzzy Inference System (ANFIS) as an intelligent technique. The data gathered involved solar radiation, outside temperature, wind speed, daylight hour and photovoltaic power; collected from on-site real-time measurements at Mexico City and Hermosillo City, Sonora State. According to our results, all three methods achieved satisfactory performances, since low values were obtained for the convergence error. The GDO improved the MLR results, minimizing the overall error percentage value from 7.2% to 6.9% for Sonora and from 2.0% to 1.9% for Mexico City; nonetheless, ANFIS overcomes both statistical methods, achieving a 5.8% error percentage value for Sonora and 1.6% for Mexico City. The results demonstrated an improvement by applying intelligent systems against statistical techniques achieving a lesser mean average error.
Exposure to hazardous concentrations of volatile organic compounds indoors in small workshops could affect the health of workers, resulting in respirative diseases, severe intoxication or even cancer. Controlling the concentration of volatile organic compounds is required to prevent harmful conditions for workers in indoor environments. In this document, PI and fuzzy PI controllers were used to reduce hazardous indoor air benzene concentrations in small workplaces. The workshop is represented by means of a well-mixed room model. From the knowledge obtained from the model, PI and fuzzy PI controllers were designed and their performances were compared. Both controllers were able to maintain the benzene concentration within secure levels for the workers. The fuzzy PI controller performed more efficiently than the PI controller. Both approaches could be expanded to control multiple extractor fans in order to reduce the air pollution in a Sustainability 2015, 7 5399 shorter time. The results from the comparative analysis showed that implementing a fuzzy logic PI controller is promising for assuring indoor air quality in this kind of hazardous work environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.