In this study, the relation among different meteorological variables and the electrical power from photovoltaic systems located at different selected places in Mexico were presented. The data was collected from on-site real-time measurements from Mexico City and the State of Sonora. The statistical estimation by the gradient descent method demonstrated that solar radiation, outdoor temperature, wind speed, and daylight hour influenced the electric power generation when it was compared with the real power of each photovoltaic system. According to our results, 97.63% of the estimation results matched the real data for Sonora and 99.66% the results matched for Mexico City, achieving overall errors less than 7% and 2%, respectively. The results showed an acceptable performance since a satisfactory estimation error was achieved for the estimation of photovoltaic power with a high determination coefficient R2.
In this manuscript, distinct approaches were used in order to obtain the best electrical power estimation from photovoltaic systems located at different selected places in Mexico. Multiple Linear Regression (MLR) and Gradient Descent Optimization (GDO) were applied as statistical methods and they were compared against an Adaptive Neuro-Fuzzy Inference System (ANFIS) as an intelligent technique. The data gathered involved solar radiation, outside temperature, wind speed, daylight hour and photovoltaic power; collected from on-site real-time measurements at Mexico City and Hermosillo City, Sonora State. According to our results, all three methods achieved satisfactory performances, since low values were obtained for the convergence error. The GDO improved the MLR results, minimizing the overall error percentage value from 7.2% to 6.9% for Sonora and from 2.0% to 1.9% for Mexico City; nonetheless, ANFIS overcomes both statistical methods, achieving a 5.8% error percentage value for Sonora and 1.6% for Mexico City. The results demonstrated an improvement by applying intelligent systems against statistical techniques achieving a lesser mean average error.
This paper presents the development of a neural inverse optimal control (NIOC) for a regenerative braking system installed in electric vehicles (EVs), which is composed of a main energy system (MES) including a storage system and an auxiliary energy system (AES). This last one is composed of a supercapacitor and a buck–boost converter. The AES aims to recover the energy generated during braking that the MES is incapable of saving and using later during the speed increase. To build up the NIOC, a neural identifier has been trained with an extended Kalman filter (EKF) to estimate the real dynamics of the buck–boost converter. The NIOC is implemented to regulate the voltage and current dynamics in the AES. For testing the drive system of the EV, a DC motor is considered where the speed is controlled using a PID controller to regulate the tracking source in the regenerative braking. Simulation results illustrate the efficiency of the proposed control scheme to track time-varying references of the AES voltage and current dynamics measured at the buck–boost converter and to guarantee the charging and discharging operation modes of the supercapacitor. In addition, it is demonstrated that the proposed control scheme enhances the EV storage system’s efficacy and performance when the regenerative braking system is working. Furthermore, the mean squared error is calculated to prove and compare the proposed control scheme with the mean squared error for a PID controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.