SummaryIt has been recognized that the development of new therapeutic drugs is a complex and expensive process. A large number of factors affect the activity in vivo of putative candidate molecules and the propensity for causing adverse and toxic effects is recognized as one of the major hurdles behind the current "target-rich, lead-poor" scenario. Structure-Activity Relationship (SAR) studies, using relational Machine Learning (ML) algorithms, have already been shown to be very useful in the complex process of rational drug design. Despite the ML successes, human expertise is still of the utmost importance in the drug development process. An iterative process and tight integration between the models developed by ML algorithms and the know-how of medicinal chemistry experts would be a very useful symbiotic approach. In this paper we describe a software tool that achieves that goal -iLogCHEM. The tool allows the use of Relational Learners in the task of identifying molecules or molecular fragments with potential to produce toxic effects, and thus help in stream-lining drug design in silico. It also allows the expert to guide the search for useful molecules without the need to know the details of the algorithms used. The models produced by the algorithms may be visualized using a graphical interface, that is of common use amongst researchers in structural biology and medicinal chemistry. The graphical interface enables the expert to provide feedback to the learning system. The developed tool has also facilities to handle the similarity bias typical of large chemical databases. For that purpose the user can filter out similar compounds when assembling a data set. Additionally, we propose ways of providing background knowledge for Relational Learners using the results of Graph Mining algorithms.
This chapter introduces Inductive Logic Programming from the perspective of search algorithms in Computer Science. It first briefly considers the Version Spaces approach to induction, and then focuses on Inductive Logic Programming: from its formal definition and main techniques and strategies, to priors used to restrict the search space and optimized sequential, parallel, and stochastic algorithms. The authors hope that this presentation of the theory and applications of Inductive Logic Programming will help the reader understand the theoretical underpinnings of inductive reasoning, and also provide a helpful overview of the State-of-theArt in the domain.
The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes ConsortiumIn the published version of this paper, the list of members of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium and their affiliations contained minor errors in the affiliations. The original Article has been corrected to include the corrected list.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.