Successful colonization of the acidic vaginal niche by C. glabrata and C. albicans depends on their ability to cope with the presence of lactic and acetic acids produced by commensal microbiota. As such, the inhibitory effect of these acids at a low pH in growth of C. glabrata and C. albicans was investigated. The effect of the presence of these organic acids in tolerance of the two Candida species to azoles used in treatment of vaginal infections was also investigated including eventual synergistic effects. Under the different experimental conditions tested lactic acid exerted no significant inhibitory effect against C. albicans or C. glabrata, contrasting with the generalized impression that the production of this acid is on the basis of the protective effect exerted by vaginal lactobacilii. Differently, C. glabrata and C. albicans exhibited susceptibility to acetic acid, more prominent at lower pHs and stronger for the latter species. Synergism between acetic acid and azoles was observed both for C. albicans and C. glabrata, while lactic acid-azole synergism was only efficient against C. albicans. Altogether our in vitro results indicate that tolerance to acetic acid at a low pH may play a more relevant role than tolerance to lactic acid in determining competitiveness in the vaginal tract of C. albicans and C. glabrata including under azole stress. Treatment of vaginal candidiasis with azoles may depend on the level of acetic and lactic acids present and improvements could be achieved synergizing the azole with these acids.
Fungal infections and, in particular, those caused by species of the Candida genus, are growing at an alarming rate and have high associated rates of mortality and morbidity. These infections, generally referred as candidiasis, range from common superficial rushes caused by an overgrowth of the yeasts in mucosal surfaces to life-threatening disseminated mycoses. The success of currently used antifungal drugs to treat candidiasis is being endangered by the continuous emergence of resistant strains, specially among non-albicans Candida species. In this review article, the mechanisms of action of currently used antifungals, with emphasis on the mechanisms of resistance reported in clinical isolates, are reviewed. Novel approaches being taken to successfully inhibit growth of pathogenic Candida species, in particular those based on the exploration of natural or synthetic chemicals or on the activity of live probiotics, are also reviewed. It is expected that these novel approaches, either used alone or in combination with traditional antifungals, may contribute to foster the identification of novel anti-Candida therapies.
Zinc (Zn)-derived foams have been prepared from an alkaline electrolyte solution by galvanostatic electrodeposition under different conditions. The resulting 316L stainless steel (SS) coated with two distinct Zn-derived foams was tested in the inhibition of osteoscarcoma cell proliferation and C. albicans colonization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.